三维各向异性磁流体动力学方程的稳定性和最优衰减

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Wan–Rong Yang, Cao Fang
{"title":"三维各向异性磁流体动力学方程的稳定性和最优衰减","authors":"Wan–Rong Yang,&nbsp;Cao Fang","doi":"10.1111/sapm.12731","DOIUrl":null,"url":null,"abstract":"<p>This paper investigates the stability problem and large time behavior of solutions to the three-dimensional magnetohydrodynamic equations with horizontal velocity dissipation and magnetic diffusion only in the <span></span><math>\n <semantics>\n <msub>\n <mi>x</mi>\n <mn>2</mn>\n </msub>\n <annotation>$x_2$</annotation>\n </semantics></math> direction. By applying the structure of the system, time-weighted methods, and the method of bootstrapping argument, we prove that any perturbation near the background magnetic field (1, 0, 0) is globally stable in the Sobolev space <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>H</mi>\n <mn>3</mn>\n </msup>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>R</mi>\n <mn>3</mn>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$H^3(\\mathbb {R}^3)$</annotation>\n </semantics></math>. Furthermore, explicit decay rates in <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>H</mi>\n <mn>2</mn>\n </msup>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>R</mi>\n <mn>3</mn>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$H^2(\\mathbb {R}^3)$</annotation>\n </semantics></math> are obtained. Motivated by the stability of the three-dimensional Navier–Stokes equations with horizontal dissipation, this paper aims to understand the stability of perturbations near a magnetic background field and reveal the mechanism of how the magnetic field generates enhanced dissipation and helps stabilize the fluid.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability and optimal decay for the 3D anisotropic magnetohydrodynamic equations\",\"authors\":\"Wan–Rong Yang,&nbsp;Cao Fang\",\"doi\":\"10.1111/sapm.12731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper investigates the stability problem and large time behavior of solutions to the three-dimensional magnetohydrodynamic equations with horizontal velocity dissipation and magnetic diffusion only in the <span></span><math>\\n <semantics>\\n <msub>\\n <mi>x</mi>\\n <mn>2</mn>\\n </msub>\\n <annotation>$x_2$</annotation>\\n </semantics></math> direction. By applying the structure of the system, time-weighted methods, and the method of bootstrapping argument, we prove that any perturbation near the background magnetic field (1, 0, 0) is globally stable in the Sobolev space <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>H</mi>\\n <mn>3</mn>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>R</mi>\\n <mn>3</mn>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$H^3(\\\\mathbb {R}^3)$</annotation>\\n </semantics></math>. Furthermore, explicit decay rates in <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>H</mi>\\n <mn>2</mn>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>R</mi>\\n <mn>3</mn>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$H^2(\\\\mathbb {R}^3)$</annotation>\\n </semantics></math> are obtained. Motivated by the stability of the three-dimensional Navier–Stokes equations with horizontal dissipation, this paper aims to understand the stability of perturbations near a magnetic background field and reveal the mechanism of how the magnetic field generates enhanced dissipation and helps stabilize the fluid.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12731\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了具有水平速度耗散和仅方向磁扩散的三维磁流体力学方程解的稳定性问题和大时间行为。通过应用系统结构、时间加权方法和引导论证方法,我们证明了背景磁场(1, 0, 0)附近的任何扰动在 Sobolev 空间中都是全局稳定的。此外,我们还得到了在中的显式衰减率。受具有水平耗散的三维纳维-斯托克斯方程稳定性的启发,本文旨在理解磁背景场附近扰动的稳定性,并揭示磁场如何产生增强耗散并帮助稳定流体的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability and optimal decay for the 3D anisotropic magnetohydrodynamic equations

This paper investigates the stability problem and large time behavior of solutions to the three-dimensional magnetohydrodynamic equations with horizontal velocity dissipation and magnetic diffusion only in the x 2 $x_2$ direction. By applying the structure of the system, time-weighted methods, and the method of bootstrapping argument, we prove that any perturbation near the background magnetic field (1, 0, 0) is globally stable in the Sobolev space H 3 ( R 3 ) $H^3(\mathbb {R}^3)$ . Furthermore, explicit decay rates in H 2 ( R 3 ) $H^2(\mathbb {R}^3)$ are obtained. Motivated by the stability of the three-dimensional Navier–Stokes equations with horizontal dissipation, this paper aims to understand the stability of perturbations near a magnetic background field and reveal the mechanism of how the magnetic field generates enhanced dissipation and helps stabilize the fluid.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信