Mohammad Mustaneer Rahman, Robert Ollington, Soonja Yeom, Nadia Ollington
{"title":"利用机器学习在在线学习环境中进行可通用的无传感器挫折检测","authors":"Mohammad Mustaneer Rahman, Robert Ollington, Soonja Yeom, Nadia Ollington","doi":"10.1007/s11257-024-09402-4","DOIUrl":null,"url":null,"abstract":"<p>Learning can generally be categorised into three domains, which include cognitive (thinking), affective (emotions or feeling) and psychomotor (physical or kinesthetic). In the learner model, acknowledging the affective aspects of learning is important for a range of learner outcomes, including motivation, persistence, and engagement. Learners’ affective states can be detected using physical (e.g. cameras) and physiological sensors (e.g., EEG) in online learning. Although these detectors demonstrate high accuracy, they raise privacy concerns for learners and present challenges in deploying them on a large scale to larger groups of students or in classroom settings. Consequently, researchers have designed an alternative method that can recognise students’ affective states at any point during online learning from their interaction with a computer-based learning platform (i.e. intelligent tutoring systems) without using any sensors. Existing sensor-free affect detectors however, are less accurate and not directly generalisable to other domains and systems. This research focuses on developing generalisable sensor-free affect detectors to identify students’ frustration during online learning using machine learning classifiers. The detectors were built by identifying minimal optimal features associated with frustration from the high-dimensional feature space through a series of experiments on a real-world students’ affective dataset, which are generalisable across various learning platforms and domains. To evaluate their accuracy and generalisability, the detectors’ performance was validated on two independent datasets collected from different educational institutions. The experimental results show that cost-sensitive Bayesian classifiers can achieve higher affect detection accuracies with a small number of generalisable features compared to other classifiers.</p>","PeriodicalId":49388,"journal":{"name":"User Modeling and User-Adapted Interaction","volume":"28 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalisable sensor-free frustration detection in online learning environments using machine learning\",\"authors\":\"Mohammad Mustaneer Rahman, Robert Ollington, Soonja Yeom, Nadia Ollington\",\"doi\":\"10.1007/s11257-024-09402-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Learning can generally be categorised into three domains, which include cognitive (thinking), affective (emotions or feeling) and psychomotor (physical or kinesthetic). In the learner model, acknowledging the affective aspects of learning is important for a range of learner outcomes, including motivation, persistence, and engagement. Learners’ affective states can be detected using physical (e.g. cameras) and physiological sensors (e.g., EEG) in online learning. Although these detectors demonstrate high accuracy, they raise privacy concerns for learners and present challenges in deploying them on a large scale to larger groups of students or in classroom settings. Consequently, researchers have designed an alternative method that can recognise students’ affective states at any point during online learning from their interaction with a computer-based learning platform (i.e. intelligent tutoring systems) without using any sensors. Existing sensor-free affect detectors however, are less accurate and not directly generalisable to other domains and systems. This research focuses on developing generalisable sensor-free affect detectors to identify students’ frustration during online learning using machine learning classifiers. The detectors were built by identifying minimal optimal features associated with frustration from the high-dimensional feature space through a series of experiments on a real-world students’ affective dataset, which are generalisable across various learning platforms and domains. To evaluate their accuracy and generalisability, the detectors’ performance was validated on two independent datasets collected from different educational institutions. The experimental results show that cost-sensitive Bayesian classifiers can achieve higher affect detection accuracies with a small number of generalisable features compared to other classifiers.</p>\",\"PeriodicalId\":49388,\"journal\":{\"name\":\"User Modeling and User-Adapted Interaction\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"User Modeling and User-Adapted Interaction\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11257-024-09402-4\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, CYBERNETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"User Modeling and User-Adapted Interaction","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11257-024-09402-4","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
Generalisable sensor-free frustration detection in online learning environments using machine learning
Learning can generally be categorised into three domains, which include cognitive (thinking), affective (emotions or feeling) and psychomotor (physical or kinesthetic). In the learner model, acknowledging the affective aspects of learning is important for a range of learner outcomes, including motivation, persistence, and engagement. Learners’ affective states can be detected using physical (e.g. cameras) and physiological sensors (e.g., EEG) in online learning. Although these detectors demonstrate high accuracy, they raise privacy concerns for learners and present challenges in deploying them on a large scale to larger groups of students or in classroom settings. Consequently, researchers have designed an alternative method that can recognise students’ affective states at any point during online learning from their interaction with a computer-based learning platform (i.e. intelligent tutoring systems) without using any sensors. Existing sensor-free affect detectors however, are less accurate and not directly generalisable to other domains and systems. This research focuses on developing generalisable sensor-free affect detectors to identify students’ frustration during online learning using machine learning classifiers. The detectors were built by identifying minimal optimal features associated with frustration from the high-dimensional feature space through a series of experiments on a real-world students’ affective dataset, which are generalisable across various learning platforms and domains. To evaluate their accuracy and generalisability, the detectors’ performance was validated on two independent datasets collected from different educational institutions. The experimental results show that cost-sensitive Bayesian classifiers can achieve higher affect detection accuracies with a small number of generalisable features compared to other classifiers.
期刊介绍:
User Modeling and User-Adapted Interaction provides an interdisciplinary forum for the dissemination of novel and significant original research results about interactive computer systems that can adapt themselves to their users, and on the design, use, and evaluation of user models for adaptation. The journal publishes high-quality original papers from, e.g., the following areas: acquisition and formal representation of user models; conceptual models and user stereotypes for personalization; student modeling and adaptive learning; models of groups of users; user model driven personalised information discovery and retrieval; recommender systems; adaptive user interfaces and agents; adaptation for accessibility and inclusion; generic user modeling systems and tools; interoperability of user models; personalization in areas such as; affective computing; ubiquitous and mobile computing; language based interactions; multi-modal interactions; virtual and augmented reality; social media and the Web; human-robot interaction; behaviour change interventions; personalized applications in specific domains; privacy, accountability, and security of information for personalization; responsible adaptation: fairness, accountability, explainability, transparency and control; methods for the design and evaluation of user models and adaptive systems