Ilyes Belouddane, Mohammed Hamel, Azzeddine Khorsi
{"title":"利用 OpenFOAM 进行混合薄膜冷却几何分析","authors":"Ilyes Belouddane, Mohammed Hamel, Azzeddine Khorsi","doi":"10.1007/s11012-024-01836-9","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a numerical investigation of the film cooling performance of a new hybrid film cooling geometry. The new hybrid concept was created to enhance the film cooling performance of gas turbine blade. The scheme consists of a converging slot hole or console with a cylindrical hole featuring a branching cylindrical hole. An analysis of the cooling performance of the advanced hybrid film cooling model was carried out across blowing ratios of (B = 0.37, 0.60, and 0.87) at a density ratio of DR=1. A numerical simulation was performed using open-source CFD software OpenFOAM. The validity of the current numerical model was evaluated for the console case, revealing excellent agreement between the numerical results and the experimental data. In this study, two distinct forms, F1 and F2, are represented with the same position variation; the SST K − <span>\\({\\omega }\\)</span> turbulence model was selected as the turbulence model for the analysis. The results show that the hybrid concepts, including auxiliary jets, enhance film cooling efficiency by effectively dispersing coolant across downstream surfaces and reducing the impact of the counter-rotating vortex pair by improving mixing with the mainstream flow. Furthermore, the supplementary jet ensures the primary coolant jet moves beside the test surface, which results in higher effectiveness, especially at high blowing ratios.</p></div>","PeriodicalId":695,"journal":{"name":"Meccanica","volume":"59 7","pages":"1103 - 1119"},"PeriodicalIF":1.9000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid film cooling geometry analysis with OpenFOAM\",\"authors\":\"Ilyes Belouddane, Mohammed Hamel, Azzeddine Khorsi\",\"doi\":\"10.1007/s11012-024-01836-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents a numerical investigation of the film cooling performance of a new hybrid film cooling geometry. The new hybrid concept was created to enhance the film cooling performance of gas turbine blade. The scheme consists of a converging slot hole or console with a cylindrical hole featuring a branching cylindrical hole. An analysis of the cooling performance of the advanced hybrid film cooling model was carried out across blowing ratios of (B = 0.37, 0.60, and 0.87) at a density ratio of DR=1. A numerical simulation was performed using open-source CFD software OpenFOAM. The validity of the current numerical model was evaluated for the console case, revealing excellent agreement between the numerical results and the experimental data. In this study, two distinct forms, F1 and F2, are represented with the same position variation; the SST K − <span>\\\\({\\\\omega }\\\\)</span> turbulence model was selected as the turbulence model for the analysis. The results show that the hybrid concepts, including auxiliary jets, enhance film cooling efficiency by effectively dispersing coolant across downstream surfaces and reducing the impact of the counter-rotating vortex pair by improving mixing with the mainstream flow. Furthermore, the supplementary jet ensures the primary coolant jet moves beside the test surface, which results in higher effectiveness, especially at high blowing ratios.</p></div>\",\"PeriodicalId\":695,\"journal\":{\"name\":\"Meccanica\",\"volume\":\"59 7\",\"pages\":\"1103 - 1119\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Meccanica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11012-024-01836-9\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meccanica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11012-024-01836-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
Hybrid film cooling geometry analysis with OpenFOAM
This paper presents a numerical investigation of the film cooling performance of a new hybrid film cooling geometry. The new hybrid concept was created to enhance the film cooling performance of gas turbine blade. The scheme consists of a converging slot hole or console with a cylindrical hole featuring a branching cylindrical hole. An analysis of the cooling performance of the advanced hybrid film cooling model was carried out across blowing ratios of (B = 0.37, 0.60, and 0.87) at a density ratio of DR=1. A numerical simulation was performed using open-source CFD software OpenFOAM. The validity of the current numerical model was evaluated for the console case, revealing excellent agreement between the numerical results and the experimental data. In this study, two distinct forms, F1 and F2, are represented with the same position variation; the SST K − \({\omega }\) turbulence model was selected as the turbulence model for the analysis. The results show that the hybrid concepts, including auxiliary jets, enhance film cooling efficiency by effectively dispersing coolant across downstream surfaces and reducing the impact of the counter-rotating vortex pair by improving mixing with the mainstream flow. Furthermore, the supplementary jet ensures the primary coolant jet moves beside the test surface, which results in higher effectiveness, especially at high blowing ratios.
期刊介绍:
Meccanica focuses on the methodological framework shared by mechanical scientists when addressing theoretical or applied problems. Original papers address various aspects of mechanical and mathematical modeling, of solution, as well as of analysis of system behavior. The journal explores fundamental and applications issues in established areas of mechanics research as well as in emerging fields; contemporary research on general mechanics, solid and structural mechanics, fluid mechanics, and mechanics of machines; interdisciplinary fields between mechanics and other mathematical and engineering sciences; interaction of mechanics with dynamical systems, advanced materials, control and computation; electromechanics; biomechanics.
Articles include full length papers; topical overviews; brief notes; discussions and comments on published papers; book reviews; and an international calendar of conferences.
Meccanica, the official journal of the Italian Association of Theoretical and Applied Mechanics, was established in 1966.