Pedro Martínez Noguera, Matteo Egiddi, Julia Södergren, Mariana Rodrigues da Silva, Jonathan Beauchamp, Mikael Agerlin Petersen, Andrea Buettner, Niels O. G. Jørgensen
{"title":"不只是地奥司明和 2-甲基异龙脑?与循环水产养殖系统有关的异味","authors":"Pedro Martínez Noguera, Matteo Egiddi, Julia Södergren, Mariana Rodrigues da Silva, Jonathan Beauchamp, Mikael Agerlin Petersen, Andrea Buettner, Niels O. G. Jørgensen","doi":"10.1111/raq.12949","DOIUrl":null,"url":null,"abstract":"<p>The consumption of seafood is driven by flavour, yet achieving its high quality remains a challenge for many species reared in recirculating aquaculture systems (RAS). A comprehensive knowledge of off-odour sources in aquatic foods is indispensable in ensuring flavour quality standards. At the beginning of the production chain, early post-harvest lipid oxidation products develop into endogenous off-odours and accumulate over time. These malodours add to those already absorbed exogenously, namely from the water and feeds, although the information on the interactions between these sources is currently scarce. Despite geosmin and 2-methylisoborneol receiving significant attention in relation to fish off-flavour, only limited knowledge on the molecular and ecological mechanisms driving their production in aquatic environments has been reported. Moreover, RAS-hosted bacteria have been associated with a wide range of other odour-active compounds, such as pyrazines, terpenoids, and other degradation byproducts that are frequently overlooked when studying flavour taint in fish. The influence of aquaculture feeds on the flavour of fish flesh has been underestimated, too, both as a source of off-odours but also as a novel modulator strategy to achieve desirable aquatic food flavours. Finally, the influence of water treatment processes widely used in RAS operations, such as advance oxidation process, ozone, ultraviolet and hydrogen peroxide disinfections, is greatly underexplored with respect to odour quality. This article reviews the current scientific evidence with supporting data on the chemical diversity of off-odours found in aquaculture fish worldwide and their potential sources and highlights knowledge gaps that should be addressed in future research.</p>","PeriodicalId":227,"journal":{"name":"Reviews in Aquaculture","volume":"16 4","pages":"2034-2063"},"PeriodicalIF":8.8000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/raq.12949","citationCount":"0","resultStr":"{\"title\":\"More than just geosmin and 2-methylisoborneol? Off-flavours associated with recirculating aquaculture systems\",\"authors\":\"Pedro Martínez Noguera, Matteo Egiddi, Julia Södergren, Mariana Rodrigues da Silva, Jonathan Beauchamp, Mikael Agerlin Petersen, Andrea Buettner, Niels O. G. Jørgensen\",\"doi\":\"10.1111/raq.12949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The consumption of seafood is driven by flavour, yet achieving its high quality remains a challenge for many species reared in recirculating aquaculture systems (RAS). A comprehensive knowledge of off-odour sources in aquatic foods is indispensable in ensuring flavour quality standards. At the beginning of the production chain, early post-harvest lipid oxidation products develop into endogenous off-odours and accumulate over time. These malodours add to those already absorbed exogenously, namely from the water and feeds, although the information on the interactions between these sources is currently scarce. Despite geosmin and 2-methylisoborneol receiving significant attention in relation to fish off-flavour, only limited knowledge on the molecular and ecological mechanisms driving their production in aquatic environments has been reported. Moreover, RAS-hosted bacteria have been associated with a wide range of other odour-active compounds, such as pyrazines, terpenoids, and other degradation byproducts that are frequently overlooked when studying flavour taint in fish. The influence of aquaculture feeds on the flavour of fish flesh has been underestimated, too, both as a source of off-odours but also as a novel modulator strategy to achieve desirable aquatic food flavours. Finally, the influence of water treatment processes widely used in RAS operations, such as advance oxidation process, ozone, ultraviolet and hydrogen peroxide disinfections, is greatly underexplored with respect to odour quality. This article reviews the current scientific evidence with supporting data on the chemical diversity of off-odours found in aquaculture fish worldwide and their potential sources and highlights knowledge gaps that should be addressed in future research.</p>\",\"PeriodicalId\":227,\"journal\":{\"name\":\"Reviews in Aquaculture\",\"volume\":\"16 4\",\"pages\":\"2034-2063\"},\"PeriodicalIF\":8.8000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/raq.12949\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews in Aquaculture\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/raq.12949\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FISHERIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Aquaculture","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/raq.12949","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FISHERIES","Score":null,"Total":0}
More than just geosmin and 2-methylisoborneol? Off-flavours associated with recirculating aquaculture systems
The consumption of seafood is driven by flavour, yet achieving its high quality remains a challenge for many species reared in recirculating aquaculture systems (RAS). A comprehensive knowledge of off-odour sources in aquatic foods is indispensable in ensuring flavour quality standards. At the beginning of the production chain, early post-harvest lipid oxidation products develop into endogenous off-odours and accumulate over time. These malodours add to those already absorbed exogenously, namely from the water and feeds, although the information on the interactions between these sources is currently scarce. Despite geosmin and 2-methylisoborneol receiving significant attention in relation to fish off-flavour, only limited knowledge on the molecular and ecological mechanisms driving their production in aquatic environments has been reported. Moreover, RAS-hosted bacteria have been associated with a wide range of other odour-active compounds, such as pyrazines, terpenoids, and other degradation byproducts that are frequently overlooked when studying flavour taint in fish. The influence of aquaculture feeds on the flavour of fish flesh has been underestimated, too, both as a source of off-odours but also as a novel modulator strategy to achieve desirable aquatic food flavours. Finally, the influence of water treatment processes widely used in RAS operations, such as advance oxidation process, ozone, ultraviolet and hydrogen peroxide disinfections, is greatly underexplored with respect to odour quality. This article reviews the current scientific evidence with supporting data on the chemical diversity of off-odours found in aquaculture fish worldwide and their potential sources and highlights knowledge gaps that should be addressed in future research.
期刊介绍:
Reviews in Aquaculture is a journal that aims to provide a platform for reviews on various aspects of aquaculture science, techniques, policies, and planning. The journal publishes fully peer-reviewed review articles on topics including global, regional, and national production and market trends in aquaculture, advancements in aquaculture practices and technology, interactions between aquaculture and the environment, indigenous and alien species in aquaculture, genetics and its relation to aquaculture, as well as aquaculture product quality and traceability. The journal is indexed and abstracted in several databases including AgBiotech News & Information (CABI), AgBiotechNet, Agricultural Engineering Abstracts, Environment Index (EBSCO Publishing), SCOPUS (Elsevier), and Web of Science (Clarivate Analytics) among others.