{"title":"[利用双光子显微镜对神经活动进行多尺度成像]。","authors":"Kazuo Kitamura","doi":"10.11477/mf.1416202686","DOIUrl":null,"url":null,"abstract":"<p><p>Two-photon calcium imaging is widely used to observe neural activity in animal brains. Improvements in two-photon microscopy and calcium indicators in recent years have led to higher sensitivity, faster speed, and larger field-of-view imaging, which have facilitated observation of large-scale neuronal activity in three dimensions on a micrometer to millimeter scale. In this paper, we describe these novel two-photon imaging techniques and their applications to neuroscience.</p>","PeriodicalId":52507,"journal":{"name":"Brain and Nerve","volume":"76 7","pages":"799-805"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Multiscale Imaging of Neural Activity Using Two-Photon Microscopy].\",\"authors\":\"Kazuo Kitamura\",\"doi\":\"10.11477/mf.1416202686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Two-photon calcium imaging is widely used to observe neural activity in animal brains. Improvements in two-photon microscopy and calcium indicators in recent years have led to higher sensitivity, faster speed, and larger field-of-view imaging, which have facilitated observation of large-scale neuronal activity in three dimensions on a micrometer to millimeter scale. In this paper, we describe these novel two-photon imaging techniques and their applications to neuroscience.</p>\",\"PeriodicalId\":52507,\"journal\":{\"name\":\"Brain and Nerve\",\"volume\":\"76 7\",\"pages\":\"799-805\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain and Nerve\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11477/mf.1416202686\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain and Nerve","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11477/mf.1416202686","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
[Multiscale Imaging of Neural Activity Using Two-Photon Microscopy].
Two-photon calcium imaging is widely used to observe neural activity in animal brains. Improvements in two-photon microscopy and calcium indicators in recent years have led to higher sensitivity, faster speed, and larger field-of-view imaging, which have facilitated observation of large-scale neuronal activity in three dimensions on a micrometer to millimeter scale. In this paper, we describe these novel two-photon imaging techniques and their applications to neuroscience.