用于普雷萨赫滞后算子迭代余量控制的牛顿和塞康特方法

IF 2.4 Q2 AUTOMATION & CONTROL SYSTEMS
J. R. Keulen;B. Jayawardhana
{"title":"用于普雷萨赫滞后算子迭代余量控制的牛顿和塞康特方法","authors":"J. R. Keulen;B. Jayawardhana","doi":"10.1109/LCSYS.2024.3415458","DOIUrl":null,"url":null,"abstract":"We study the properties of remnant function, which is a function of output remnant versus amplitude of the input signal, of Preisach hysteresis operators. The remnant behavior (or the leftover memory when the input reaches zero) enables an energy-optimal application of piezoactuator systems where the applied electrical field can be removed when the desired strain/displacement has been attained. We show that when the underlying weight of Preisach operators is positive, the resulting remnant curve is monotonically increasing and accordingly a Newton and secant update laws for the iterative remnant control are proposed that allows faster convergence to the desired remnant value than the existing iterative remnant control algorithm in literature as validated by numerical simulation.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Newton and Secant Methods for Iterative Remnant Control of Preisach Hysteresis Operators\",\"authors\":\"J. R. Keulen;B. Jayawardhana\",\"doi\":\"10.1109/LCSYS.2024.3415458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the properties of remnant function, which is a function of output remnant versus amplitude of the input signal, of Preisach hysteresis operators. The remnant behavior (or the leftover memory when the input reaches zero) enables an energy-optimal application of piezoactuator systems where the applied electrical field can be removed when the desired strain/displacement has been attained. We show that when the underlying weight of Preisach operators is positive, the resulting remnant curve is monotonically increasing and accordingly a Newton and secant update laws for the iterative remnant control are proposed that allows faster convergence to the desired remnant value than the existing iterative remnant control algorithm in literature as validated by numerical simulation.\",\"PeriodicalId\":37235,\"journal\":{\"name\":\"IEEE Control Systems Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Control Systems Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10559240/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10559240/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了普雷萨赫滞后算子的残余函数特性,即输出残余与输入信号振幅的函数关系。残余行为(或输入为零时的残余记忆)使得压电致动器系统的能量优化应用成为可能,当达到所需的应变/位移时,外加电场即可被移除。我们的研究表明,当 Preisach 算子的基本权重为正时,所产生的残余曲线是单调递增的,因此我们提出了用于迭代残余控制的牛顿和secant 更新定律,与现有文献中的迭代残余控制算法相比,该算法能更快地收敛到所需的残余值,并通过数值模拟进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Newton and Secant Methods for Iterative Remnant Control of Preisach Hysteresis Operators
We study the properties of remnant function, which is a function of output remnant versus amplitude of the input signal, of Preisach hysteresis operators. The remnant behavior (or the leftover memory when the input reaches zero) enables an energy-optimal application of piezoactuator systems where the applied electrical field can be removed when the desired strain/displacement has been attained. We show that when the underlying weight of Preisach operators is positive, the resulting remnant curve is monotonically increasing and accordingly a Newton and secant update laws for the iterative remnant control are proposed that allows faster convergence to the desired remnant value than the existing iterative remnant control algorithm in literature as validated by numerical simulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信