{"title":"含废旧医用玻璃的高强度碱活性混凝土在碳化和高温条件下的多尺度优化分析","authors":"Mohamed Abdellatief , Basma Adel , Hani Alanazi , Taher A. Tawfik","doi":"10.1016/j.dibe.2024.100492","DOIUrl":null,"url":null,"abstract":"<div><p>This study focused on optimizing the effect of recycled medical glass (RMG) on the performance of high-strength alkali-activated concrete (AAC) at different scales. RMG was incorporated into the AACs to substitute a portion of the precursor, followed by the addition of fine and coarse RMG to replace a portion of the fine and coarse river sand, respectively. Thus, the effects of these variables on compressive strength, splitting strength, and water absorption using the simplex centroid design method were examined. Additionally, freezing-thawing, carbonation resistance, and residual strength at elevated temperatures of AACs were investigated. The experimental results showed that AACs had compressive strengths between 46.8 and 102.0 MPa, tensile strengths between 6.20 and 13.60 MPa, and water absorption between 2.93 and 4.82%. The optimized AACs showed a significant increment in residual strength at high temperatures as compared to the control mixture. The AAC with RMG may provide a compact microstructure with low porosity to enhance carbonation and freeze-thaw resistance. Finally, the outcomes of the ecological evaluation support the usage of RMG in high strength AAC as a sustainable building and construction material.</p></div>","PeriodicalId":34137,"journal":{"name":"Developments in the Built Environment","volume":"19 ","pages":"Article 100492"},"PeriodicalIF":6.2000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266616592400173X/pdfft?md5=20db036d75243339a3a138d55cea2cd0&pid=1-s2.0-S266616592400173X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Multiscale optimization analysis of high strength alkali-activated concrete containing waste medical glass under exposure to carbonation and elevated temperatures\",\"authors\":\"Mohamed Abdellatief , Basma Adel , Hani Alanazi , Taher A. Tawfik\",\"doi\":\"10.1016/j.dibe.2024.100492\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study focused on optimizing the effect of recycled medical glass (RMG) on the performance of high-strength alkali-activated concrete (AAC) at different scales. RMG was incorporated into the AACs to substitute a portion of the precursor, followed by the addition of fine and coarse RMG to replace a portion of the fine and coarse river sand, respectively. Thus, the effects of these variables on compressive strength, splitting strength, and water absorption using the simplex centroid design method were examined. Additionally, freezing-thawing, carbonation resistance, and residual strength at elevated temperatures of AACs were investigated. The experimental results showed that AACs had compressive strengths between 46.8 and 102.0 MPa, tensile strengths between 6.20 and 13.60 MPa, and water absorption between 2.93 and 4.82%. The optimized AACs showed a significant increment in residual strength at high temperatures as compared to the control mixture. The AAC with RMG may provide a compact microstructure with low porosity to enhance carbonation and freeze-thaw resistance. Finally, the outcomes of the ecological evaluation support the usage of RMG in high strength AAC as a sustainable building and construction material.</p></div>\",\"PeriodicalId\":34137,\"journal\":{\"name\":\"Developments in the Built Environment\",\"volume\":\"19 \",\"pages\":\"Article 100492\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S266616592400173X/pdfft?md5=20db036d75243339a3a138d55cea2cd0&pid=1-s2.0-S266616592400173X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Developments in the Built Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266616592400173X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developments in the Built Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266616592400173X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Multiscale optimization analysis of high strength alkali-activated concrete containing waste medical glass under exposure to carbonation and elevated temperatures
This study focused on optimizing the effect of recycled medical glass (RMG) on the performance of high-strength alkali-activated concrete (AAC) at different scales. RMG was incorporated into the AACs to substitute a portion of the precursor, followed by the addition of fine and coarse RMG to replace a portion of the fine and coarse river sand, respectively. Thus, the effects of these variables on compressive strength, splitting strength, and water absorption using the simplex centroid design method were examined. Additionally, freezing-thawing, carbonation resistance, and residual strength at elevated temperatures of AACs were investigated. The experimental results showed that AACs had compressive strengths between 46.8 and 102.0 MPa, tensile strengths between 6.20 and 13.60 MPa, and water absorption between 2.93 and 4.82%. The optimized AACs showed a significant increment in residual strength at high temperatures as compared to the control mixture. The AAC with RMG may provide a compact microstructure with low porosity to enhance carbonation and freeze-thaw resistance. Finally, the outcomes of the ecological evaluation support the usage of RMG in high strength AAC as a sustainable building and construction material.
期刊介绍:
Developments in the Built Environment (DIBE) is a recently established peer-reviewed gold open access journal, ensuring that all accepted articles are permanently and freely accessible. Focused on civil engineering and the built environment, DIBE publishes original papers and short communications. Encompassing topics such as construction materials and building sustainability, the journal adopts a holistic approach with the aim of benefiting the community.