{"title":"采用随时间变化的 CFD 方法评估埋地高压输气管道酸性天然气泄漏的后果","authors":"Mojtaba Bagheri, Ataallah Sari","doi":"10.1016/j.jlp.2024.105389","DOIUrl":null,"url":null,"abstract":"<div><p>High-pressure pipelines that transport sour natural gas contain high levels of hydrogen sulfide, which is poisonous and has irreparable effects on human health even in low concentrations. These pipes are break valve-assisted and buried underground to minimize gas leakage and protect people nearby. This study examines their leakage through a series of time-dependent three-dimensional CFD simulations. In contradiction of previous works that only considered the above-ground environment, here, for more realism, the computational domain includes the pipeline, trench, covering soil, and above-ground environment. The impact of hole size, leak location on the pipe, wind velocity, atmospheric stability class, time of occurrence (day or night), and the presence of break valves on the dispersion of leaked gas are comprehensively investigated. Results indicate that the effect of hole diameter on hydrogen sulfide concentration in the above-ground environment is dominant to other factors. In addition, the probability of fatality due to gas release and the intensity of the gas leak exposure crisis are studied by combining the dose-response model and CFD simulation results. In this line, <em>LT</em><sub>50</sub>, which measures how long it takes for 50% of people in different areas around the pipeline to die from exposure to hydrogen sulfide is calculated.</p></div>","PeriodicalId":16291,"journal":{"name":"Journal of Loss Prevention in The Process Industries","volume":"91 ","pages":"Article 105389"},"PeriodicalIF":3.6000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A time-dependent CFD approach to consequence assessment of sour natural gas leakage from buried high-pressure transmission pipelines\",\"authors\":\"Mojtaba Bagheri, Ataallah Sari\",\"doi\":\"10.1016/j.jlp.2024.105389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>High-pressure pipelines that transport sour natural gas contain high levels of hydrogen sulfide, which is poisonous and has irreparable effects on human health even in low concentrations. These pipes are break valve-assisted and buried underground to minimize gas leakage and protect people nearby. This study examines their leakage through a series of time-dependent three-dimensional CFD simulations. In contradiction of previous works that only considered the above-ground environment, here, for more realism, the computational domain includes the pipeline, trench, covering soil, and above-ground environment. The impact of hole size, leak location on the pipe, wind velocity, atmospheric stability class, time of occurrence (day or night), and the presence of break valves on the dispersion of leaked gas are comprehensively investigated. Results indicate that the effect of hole diameter on hydrogen sulfide concentration in the above-ground environment is dominant to other factors. In addition, the probability of fatality due to gas release and the intensity of the gas leak exposure crisis are studied by combining the dose-response model and CFD simulation results. In this line, <em>LT</em><sub>50</sub>, which measures how long it takes for 50% of people in different areas around the pipeline to die from exposure to hydrogen sulfide is calculated.</p></div>\",\"PeriodicalId\":16291,\"journal\":{\"name\":\"Journal of Loss Prevention in The Process Industries\",\"volume\":\"91 \",\"pages\":\"Article 105389\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Loss Prevention in The Process Industries\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0950423024001475\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Loss Prevention in The Process Industries","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950423024001475","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
A time-dependent CFD approach to consequence assessment of sour natural gas leakage from buried high-pressure transmission pipelines
High-pressure pipelines that transport sour natural gas contain high levels of hydrogen sulfide, which is poisonous and has irreparable effects on human health even in low concentrations. These pipes are break valve-assisted and buried underground to minimize gas leakage and protect people nearby. This study examines their leakage through a series of time-dependent three-dimensional CFD simulations. In contradiction of previous works that only considered the above-ground environment, here, for more realism, the computational domain includes the pipeline, trench, covering soil, and above-ground environment. The impact of hole size, leak location on the pipe, wind velocity, atmospheric stability class, time of occurrence (day or night), and the presence of break valves on the dispersion of leaked gas are comprehensively investigated. Results indicate that the effect of hole diameter on hydrogen sulfide concentration in the above-ground environment is dominant to other factors. In addition, the probability of fatality due to gas release and the intensity of the gas leak exposure crisis are studied by combining the dose-response model and CFD simulation results. In this line, LT50, which measures how long it takes for 50% of people in different areas around the pipeline to die from exposure to hydrogen sulfide is calculated.
期刊介绍:
The broad scope of the journal is process safety. Process safety is defined as the prevention and mitigation of process-related injuries and damage arising from process incidents involving fire, explosion and toxic release. Such undesired events occur in the process industries during the use, storage, manufacture, handling, and transportation of highly hazardous chemicals.