智能手机支持的机器学习方法通过醛嗪功能化化学生物传感器辅助铜 (II) 定量和光电化学爆炸物识别

IF 6.5 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Mohit Kumar Chattopadhyay , Amita Mondal , Abhijit Hazra , Swarup Kumar Tarai , Bishwajit Singh Kapoor , Sudit S. Mukhopadhyay , Surya Sarkar , Priyabrata Banerjee
{"title":"智能手机支持的机器学习方法通过醛嗪功能化化学生物传感器辅助铜 (II) 定量和光电化学爆炸物识别","authors":"Mohit Kumar Chattopadhyay ,&nbsp;Amita Mondal ,&nbsp;Abhijit Hazra ,&nbsp;Swarup Kumar Tarai ,&nbsp;Bishwajit Singh Kapoor ,&nbsp;Sudit S. Mukhopadhyay ,&nbsp;Surya Sarkar ,&nbsp;Priyabrata Banerjee","doi":"10.1016/j.snr.2024.100215","DOIUrl":null,"url":null,"abstract":"<div><p>An Aldazine-based optoelectrochemical sensor, <strong>BMH</strong> (1-(quinolin-4-ylmethylene)hydrazono)methyl)naphthalen-2-ol) has been introduced herein for selective detection of aqueous copper (Cu<sup>2+</sup>) and 2, 4, 6-Trinitrophenol (TNP) at an ultra-low level detection limit (0.09 ppm for Cu<sup>2+</sup> and 0.019 ppm for TNP). Multichannel recognition aptitude of the chemosensor (<strong>BMH</strong>) towards both Cu<sup>2+</sup> and TNP along with bountiful practical applications ascertained it as an innovative one in the environmental and biomedical domains. <strong>BMH</strong> can detect Cu<sup>2+</sup> in water, fetal bovine serum, and human urine samples, while explosive TNP can be identified in water, soil, and matches powder. The intracellular Cu<sup>2+</sup> and TNP recognition efficiencies of <strong>BMH</strong> have been investigated in human lung cancer cell lines (A459). The hassle-free smartphone ensemble machine learning approach for Cu<sup>2+</sup>quantification has been introduced which would certainly be a significant addition in the domain of water quality analysis. Moreover, the ethylenediaminetetraacetic acid (EDTA) mediated reversibility of the probe could serve as a logic gate imitating electrical circuitry.</p></div>","PeriodicalId":426,"journal":{"name":"Sensors and Actuators Reports","volume":"8 ","pages":"Article 100215"},"PeriodicalIF":6.5000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666053924000316/pdfft?md5=62cf8594c970cd8e7b0642370a1aabef&pid=1-s2.0-S2666053924000316-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Smartphone enabled machine learning approach assisted copper (II) quantification and opto-electrochemical explosive recognition by Aldazine-functionalized chemobiosensor\",\"authors\":\"Mohit Kumar Chattopadhyay ,&nbsp;Amita Mondal ,&nbsp;Abhijit Hazra ,&nbsp;Swarup Kumar Tarai ,&nbsp;Bishwajit Singh Kapoor ,&nbsp;Sudit S. Mukhopadhyay ,&nbsp;Surya Sarkar ,&nbsp;Priyabrata Banerjee\",\"doi\":\"10.1016/j.snr.2024.100215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>An Aldazine-based optoelectrochemical sensor, <strong>BMH</strong> (1-(quinolin-4-ylmethylene)hydrazono)methyl)naphthalen-2-ol) has been introduced herein for selective detection of aqueous copper (Cu<sup>2+</sup>) and 2, 4, 6-Trinitrophenol (TNP) at an ultra-low level detection limit (0.09 ppm for Cu<sup>2+</sup> and 0.019 ppm for TNP). Multichannel recognition aptitude of the chemosensor (<strong>BMH</strong>) towards both Cu<sup>2+</sup> and TNP along with bountiful practical applications ascertained it as an innovative one in the environmental and biomedical domains. <strong>BMH</strong> can detect Cu<sup>2+</sup> in water, fetal bovine serum, and human urine samples, while explosive TNP can be identified in water, soil, and matches powder. The intracellular Cu<sup>2+</sup> and TNP recognition efficiencies of <strong>BMH</strong> have been investigated in human lung cancer cell lines (A459). The hassle-free smartphone ensemble machine learning approach for Cu<sup>2+</sup>quantification has been introduced which would certainly be a significant addition in the domain of water quality analysis. Moreover, the ethylenediaminetetraacetic acid (EDTA) mediated reversibility of the probe could serve as a logic gate imitating electrical circuitry.</p></div>\",\"PeriodicalId\":426,\"journal\":{\"name\":\"Sensors and Actuators Reports\",\"volume\":\"8 \",\"pages\":\"Article 100215\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666053924000316/pdfft?md5=62cf8594c970cd8e7b0642370a1aabef&pid=1-s2.0-S2666053924000316-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors and Actuators Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666053924000316\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666053924000316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种基于哒嗪的光电化学传感器 BMH(1-(quinolin-4-ylmethylene)hydrazono)methyl)naphthalen-2-ol),用于选择性检测水体中的铜(Cu2+)和 2, 4, 6-三硝基苯酚(TNP),检测限超低(Cu2+ 为 0.09 ppm,TNP 为 0.019 ppm)。化学传感器(BMH)对 Cu2+ 和 TNP 的多通道识别能力以及丰富的实际应用确定了它在环境和生物医学领域的创新性。BMH 可以检测水、胎牛血清和人体尿液样本中的 Cu2+,而爆炸性 TNP 则可以在水、土壤和火柴粉末中识别。在人类肺癌细胞系(A459)中研究了 BMH 的细胞内 Cu2+ 和 TNP 识别效率。该研究还介绍了用于 Cu2+ 定量的无障碍智能手机集合机器学习方法,这无疑是对水质分析领域的重要补充。此外,乙二胺四乙酸(EDTA)介导的探针可逆性可作为模仿电路的逻辑门。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Smartphone enabled machine learning approach assisted copper (II) quantification and opto-electrochemical explosive recognition by Aldazine-functionalized chemobiosensor

Smartphone enabled machine learning approach assisted copper (II) quantification and opto-electrochemical explosive recognition by Aldazine-functionalized chemobiosensor

An Aldazine-based optoelectrochemical sensor, BMH (1-(quinolin-4-ylmethylene)hydrazono)methyl)naphthalen-2-ol) has been introduced herein for selective detection of aqueous copper (Cu2+) and 2, 4, 6-Trinitrophenol (TNP) at an ultra-low level detection limit (0.09 ppm for Cu2+ and 0.019 ppm for TNP). Multichannel recognition aptitude of the chemosensor (BMH) towards both Cu2+ and TNP along with bountiful practical applications ascertained it as an innovative one in the environmental and biomedical domains. BMH can detect Cu2+ in water, fetal bovine serum, and human urine samples, while explosive TNP can be identified in water, soil, and matches powder. The intracellular Cu2+ and TNP recognition efficiencies of BMH have been investigated in human lung cancer cell lines (A459). The hassle-free smartphone ensemble machine learning approach for Cu2+quantification has been introduced which would certainly be a significant addition in the domain of water quality analysis. Moreover, the ethylenediaminetetraacetic acid (EDTA) mediated reversibility of the probe could serve as a logic gate imitating electrical circuitry.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.60
自引率
0.00%
发文量
60
审稿时长
49 days
期刊介绍: Sensors and Actuators Reports is a peer-reviewed open access journal launched out from the Sensors and Actuators journal family. Sensors and Actuators Reports is dedicated to publishing new and original works in the field of all type of sensors and actuators, including bio-, chemical-, physical-, and nano- sensors and actuators, which demonstrates significant progress beyond the current state of the art. The journal regularly publishes original research papers, reviews, and short communications. For research papers and short communications, the journal aims to publish the new and original work supported by experimental results and as such purely theoretical works are not accepted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信