Xucheng Zhou , Yi Luo , Yuchen He , Can Peng , Peiyang Zeng , Yan Li , Zigang Deng
{"title":"高温超导销钉式磁悬浮系统的阻尼特性","authors":"Xucheng Zhou , Yi Luo , Yuchen He , Can Peng , Peiyang Zeng , Yan Li , Zigang Deng","doi":"10.1016/j.cryogenics.2024.103892","DOIUrl":null,"url":null,"abstract":"<div><p>High-temperature superconducting (HTS) pinning maglev has achieved rapid development in recent decades. The levitation system of the HTS pinning maglev is mainly composed of Dewar with built-in HTS bulks and permanent magnet guideway (PMG). For a maglev transportation system, damping is important for vibration attenuation, and the inherent damping characteristics of the HTS pinning maglev system have not been evaluated clearly. In this paper, the damping characteristics of the HTS pinning maglev system are analyzed through experiments and simulations. Experiments are conducted to measure the dynamic responses of the system under free and forced vibrations. The logarithmic envelope method is used to evaluate the system damping under free vibration. The cross-correlation function is utilized to obtain the phase difference between the system vibration signal and excitation signal, and then calculate the system damping under forced vibration conditions. In addition, a two-dimensional finite element model including HTS bulks, PMG, and Dewar conductive shells is established to evaluate the damping force generated by each component during system vibrations. The additional eddy current damping of the conductive Dewar shell is considered and analyzed. Finally, from the perspective of system damping and thermal stability of HTS bulks, suggestions for selecting Dewar shell materials are proposed.</p></div>","PeriodicalId":10812,"journal":{"name":"Cryogenics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Damping characteristics of High-Temperature superconducting pinning maglev levitation system\",\"authors\":\"Xucheng Zhou , Yi Luo , Yuchen He , Can Peng , Peiyang Zeng , Yan Li , Zigang Deng\",\"doi\":\"10.1016/j.cryogenics.2024.103892\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>High-temperature superconducting (HTS) pinning maglev has achieved rapid development in recent decades. The levitation system of the HTS pinning maglev is mainly composed of Dewar with built-in HTS bulks and permanent magnet guideway (PMG). For a maglev transportation system, damping is important for vibration attenuation, and the inherent damping characteristics of the HTS pinning maglev system have not been evaluated clearly. In this paper, the damping characteristics of the HTS pinning maglev system are analyzed through experiments and simulations. Experiments are conducted to measure the dynamic responses of the system under free and forced vibrations. The logarithmic envelope method is used to evaluate the system damping under free vibration. The cross-correlation function is utilized to obtain the phase difference between the system vibration signal and excitation signal, and then calculate the system damping under forced vibration conditions. In addition, a two-dimensional finite element model including HTS bulks, PMG, and Dewar conductive shells is established to evaluate the damping force generated by each component during system vibrations. The additional eddy current damping of the conductive Dewar shell is considered and analyzed. Finally, from the perspective of system damping and thermal stability of HTS bulks, suggestions for selecting Dewar shell materials are proposed.</p></div>\",\"PeriodicalId\":10812,\"journal\":{\"name\":\"Cryogenics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cryogenics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0011227524001127\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryogenics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0011227524001127","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Damping characteristics of High-Temperature superconducting pinning maglev levitation system
High-temperature superconducting (HTS) pinning maglev has achieved rapid development in recent decades. The levitation system of the HTS pinning maglev is mainly composed of Dewar with built-in HTS bulks and permanent magnet guideway (PMG). For a maglev transportation system, damping is important for vibration attenuation, and the inherent damping characteristics of the HTS pinning maglev system have not been evaluated clearly. In this paper, the damping characteristics of the HTS pinning maglev system are analyzed through experiments and simulations. Experiments are conducted to measure the dynamic responses of the system under free and forced vibrations. The logarithmic envelope method is used to evaluate the system damping under free vibration. The cross-correlation function is utilized to obtain the phase difference between the system vibration signal and excitation signal, and then calculate the system damping under forced vibration conditions. In addition, a two-dimensional finite element model including HTS bulks, PMG, and Dewar conductive shells is established to evaluate the damping force generated by each component during system vibrations. The additional eddy current damping of the conductive Dewar shell is considered and analyzed. Finally, from the perspective of system damping and thermal stability of HTS bulks, suggestions for selecting Dewar shell materials are proposed.
期刊介绍:
Cryogenics is the world''s leading journal focusing on all aspects of cryoengineering and cryogenics. Papers published in Cryogenics cover a wide variety of subjects in low temperature engineering and research. Among the areas covered are:
- Applications of superconductivity: magnets, electronics, devices
- Superconductors and their properties
- Properties of materials: metals, alloys, composites, polymers, insulations
- New applications of cryogenic technology to processes, devices, machinery
- Refrigeration and liquefaction technology
- Thermodynamics
- Fluid properties and fluid mechanics
- Heat transfer
- Thermometry and measurement science
- Cryogenics in medicine
- Cryoelectronics