Jiao Tan , Pei Gong , Xueli Wu , Ping Liu , Gaimei Ren , Yongle Qu , Run Li , Chuanjun Tu
{"title":"通过在绿色石油焦中添加多种功能性喹啉调节剂改善碳块的自烧结机械性能","authors":"Jiao Tan , Pei Gong , Xueli Wu , Ping Liu , Gaimei Ren , Yongle Qu , Run Li , Chuanjun Tu","doi":"10.1016/j.fuproc.2024.108103","DOIUrl":null,"url":null,"abstract":"<div><p>The self-sintering of green petroleum coke (GPC) is an important method for the synthesis of high-strength graphite blocks owing to its relatively short production cycle. However, the volatilization of small molecular components in GPC inevitably results in the generation of pores and microcracks which seriously deteriorates the mechanical performance of carbon blocks. Herein, we report a facile quinoline-assisted composition regulation approach to prepare high mechanical strength carbon blocks using GPC as the starting material. Quinoline exhibits three major functions. Firstly, unideal organic volatiles can be effectively removed via quinoline extraction, thereby inhibiting the generation of pores and microcracks. Secondly, the presence of quinoline can promote the polymerization of aryl compounds due to its easy formation of free radicals. Thirdly, the interactions between the graphite layers are enhanced by the polarization of the aromatic rings, which clearly improves the mechanical performance of the carbon blocks. As a result, the obtained carbon block GPC/QI-17-C demonstrates an apparent density of 1.56 g·cm<sup>−3</sup>, flexural strength of 39.61 MPa and compressive strength of 136.98 MPa, which are 1.16, 3.39 and 4.53 times that of pristine GPC counterparts, respectively.</p></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"260 ","pages":"Article 108103"},"PeriodicalIF":7.2000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0378382024000730/pdfft?md5=3d32f8439d8214b9cb3a7fd494ef1900&pid=1-s2.0-S0378382024000730-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Improved self-sintering mechanical performance of carbon blocks via the addition of multiple functional quinoline regulator in green petroleum coke\",\"authors\":\"Jiao Tan , Pei Gong , Xueli Wu , Ping Liu , Gaimei Ren , Yongle Qu , Run Li , Chuanjun Tu\",\"doi\":\"10.1016/j.fuproc.2024.108103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The self-sintering of green petroleum coke (GPC) is an important method for the synthesis of high-strength graphite blocks owing to its relatively short production cycle. However, the volatilization of small molecular components in GPC inevitably results in the generation of pores and microcracks which seriously deteriorates the mechanical performance of carbon blocks. Herein, we report a facile quinoline-assisted composition regulation approach to prepare high mechanical strength carbon blocks using GPC as the starting material. Quinoline exhibits three major functions. Firstly, unideal organic volatiles can be effectively removed via quinoline extraction, thereby inhibiting the generation of pores and microcracks. Secondly, the presence of quinoline can promote the polymerization of aryl compounds due to its easy formation of free radicals. Thirdly, the interactions between the graphite layers are enhanced by the polarization of the aromatic rings, which clearly improves the mechanical performance of the carbon blocks. As a result, the obtained carbon block GPC/QI-17-C demonstrates an apparent density of 1.56 g·cm<sup>−3</sup>, flexural strength of 39.61 MPa and compressive strength of 136.98 MPa, which are 1.16, 3.39 and 4.53 times that of pristine GPC counterparts, respectively.</p></div>\",\"PeriodicalId\":326,\"journal\":{\"name\":\"Fuel Processing Technology\",\"volume\":\"260 \",\"pages\":\"Article 108103\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0378382024000730/pdfft?md5=3d32f8439d8214b9cb3a7fd494ef1900&pid=1-s2.0-S0378382024000730-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fuel Processing Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378382024000730\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel Processing Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378382024000730","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Improved self-sintering mechanical performance of carbon blocks via the addition of multiple functional quinoline regulator in green petroleum coke
The self-sintering of green petroleum coke (GPC) is an important method for the synthesis of high-strength graphite blocks owing to its relatively short production cycle. However, the volatilization of small molecular components in GPC inevitably results in the generation of pores and microcracks which seriously deteriorates the mechanical performance of carbon blocks. Herein, we report a facile quinoline-assisted composition regulation approach to prepare high mechanical strength carbon blocks using GPC as the starting material. Quinoline exhibits three major functions. Firstly, unideal organic volatiles can be effectively removed via quinoline extraction, thereby inhibiting the generation of pores and microcracks. Secondly, the presence of quinoline can promote the polymerization of aryl compounds due to its easy formation of free radicals. Thirdly, the interactions between the graphite layers are enhanced by the polarization of the aromatic rings, which clearly improves the mechanical performance of the carbon blocks. As a result, the obtained carbon block GPC/QI-17-C demonstrates an apparent density of 1.56 g·cm−3, flexural strength of 39.61 MPa and compressive strength of 136.98 MPa, which are 1.16, 3.39 and 4.53 times that of pristine GPC counterparts, respectively.
期刊介绍:
Fuel Processing Technology (FPT) deals with the scientific and technological aspects of converting fossil and renewable resources to clean fuels, value-added chemicals, fuel-related advanced carbon materials and by-products. In addition to the traditional non-nuclear fossil fuels, biomass and wastes, papers on the integration of renewables such as solar and wind energy and energy storage into the fuel processing processes, as well as papers on the production and conversion of non-carbon-containing fuels such as hydrogen and ammonia, are also welcome. While chemical conversion is emphasized, papers on advanced physical conversion processes are also considered for publication in FPT. Papers on the fundamental aspects of fuel structure and properties will also be considered.