Bilash Chatterjee , Subhankar Bose , Richa Singh , Amit Kumar Dixit , Lalrin Puia , Amit Kumar Srivastava
{"title":"MiRNA-3163 通过靶向 SOX-2 转录因子限制卵巢癌干样细胞","authors":"Bilash Chatterjee , Subhankar Bose , Richa Singh , Amit Kumar Dixit , Lalrin Puia , Amit Kumar Srivastava","doi":"10.1016/j.ncrna.2024.06.012","DOIUrl":null,"url":null,"abstract":"<div><p>Cancer stem cells (CSCs) are pivotal in both cancer progression and the acquisition of drug resistance. MicroRNAs (miRNAs) play a crucial role in modulating CSC properties and are being explored as potential targets for therapeutic interventions. MiR-3163 is primarily known for its tumor suppressive properties in various human malignancies, with lower expression reported across different cancer types. However, its role in regulating the ovarian CSC phenotype and the underlying mechanism remain largely unknown. Here, we report a remarkable downregulation of miR-3163 in ovarian cancer stem-like cells (CSLCs). Enforced expression of miR-3163 in ovarian adherent and CSLCs, significantly disrupts the stemness phenotype. Moreover, downregulation of miR-3163 expression in ovarian cancer cells (OV2008 and OVCAR-3) inhibits the stem-like cells characterized by CD44+CD117+ expression. Sphere formation assay results reveal that overexpression of miR-3163 in ovarian cancer cells significantly inhibits spheroid formation ability, confirming the regulatory properties of miR-3163 on ovarian CSLCs. Mechanistic investigation reveals that miR-3163 depletes ovarian CSLCs via targeting SOX-2. Furthermore, we establish SOX-2 as a direct target of miR-3163 through dual-luciferase assay. Taken together, our study demonstrates that overexpression of miR-3163 could be a promising strategy for efficiently eradicating the CSC population to prevent chemoresistance and tumor relapse in ovarian cancer patients.</p></div>","PeriodicalId":37653,"journal":{"name":"Non-coding RNA Research","volume":"9 4","pages":"Pages 1308-1314"},"PeriodicalIF":5.9000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468054024001173/pdfft?md5=f2b0546ab628ee3dc2fbcab3fce7d88e&pid=1-s2.0-S2468054024001173-main.pdf","citationCount":"0","resultStr":"{\"title\":\"MiRNA-3163 limits ovarian cancer stem-like cells via targeting SOX-2 transcription factor\",\"authors\":\"Bilash Chatterjee , Subhankar Bose , Richa Singh , Amit Kumar Dixit , Lalrin Puia , Amit Kumar Srivastava\",\"doi\":\"10.1016/j.ncrna.2024.06.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cancer stem cells (CSCs) are pivotal in both cancer progression and the acquisition of drug resistance. MicroRNAs (miRNAs) play a crucial role in modulating CSC properties and are being explored as potential targets for therapeutic interventions. MiR-3163 is primarily known for its tumor suppressive properties in various human malignancies, with lower expression reported across different cancer types. However, its role in regulating the ovarian CSC phenotype and the underlying mechanism remain largely unknown. Here, we report a remarkable downregulation of miR-3163 in ovarian cancer stem-like cells (CSLCs). Enforced expression of miR-3163 in ovarian adherent and CSLCs, significantly disrupts the stemness phenotype. Moreover, downregulation of miR-3163 expression in ovarian cancer cells (OV2008 and OVCAR-3) inhibits the stem-like cells characterized by CD44+CD117+ expression. Sphere formation assay results reveal that overexpression of miR-3163 in ovarian cancer cells significantly inhibits spheroid formation ability, confirming the regulatory properties of miR-3163 on ovarian CSLCs. Mechanistic investigation reveals that miR-3163 depletes ovarian CSLCs via targeting SOX-2. Furthermore, we establish SOX-2 as a direct target of miR-3163 through dual-luciferase assay. Taken together, our study demonstrates that overexpression of miR-3163 could be a promising strategy for efficiently eradicating the CSC population to prevent chemoresistance and tumor relapse in ovarian cancer patients.</p></div>\",\"PeriodicalId\":37653,\"journal\":{\"name\":\"Non-coding RNA Research\",\"volume\":\"9 4\",\"pages\":\"Pages 1308-1314\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2468054024001173/pdfft?md5=f2b0546ab628ee3dc2fbcab3fce7d88e&pid=1-s2.0-S2468054024001173-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Non-coding RNA Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468054024001173\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Non-coding RNA Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468054024001173","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
MiRNA-3163 limits ovarian cancer stem-like cells via targeting SOX-2 transcription factor
Cancer stem cells (CSCs) are pivotal in both cancer progression and the acquisition of drug resistance. MicroRNAs (miRNAs) play a crucial role in modulating CSC properties and are being explored as potential targets for therapeutic interventions. MiR-3163 is primarily known for its tumor suppressive properties in various human malignancies, with lower expression reported across different cancer types. However, its role in regulating the ovarian CSC phenotype and the underlying mechanism remain largely unknown. Here, we report a remarkable downregulation of miR-3163 in ovarian cancer stem-like cells (CSLCs). Enforced expression of miR-3163 in ovarian adherent and CSLCs, significantly disrupts the stemness phenotype. Moreover, downregulation of miR-3163 expression in ovarian cancer cells (OV2008 and OVCAR-3) inhibits the stem-like cells characterized by CD44+CD117+ expression. Sphere formation assay results reveal that overexpression of miR-3163 in ovarian cancer cells significantly inhibits spheroid formation ability, confirming the regulatory properties of miR-3163 on ovarian CSLCs. Mechanistic investigation reveals that miR-3163 depletes ovarian CSLCs via targeting SOX-2. Furthermore, we establish SOX-2 as a direct target of miR-3163 through dual-luciferase assay. Taken together, our study demonstrates that overexpression of miR-3163 could be a promising strategy for efficiently eradicating the CSC population to prevent chemoresistance and tumor relapse in ovarian cancer patients.
期刊介绍:
Non-coding RNA Research aims to publish high quality research and review articles on the mechanistic role of non-coding RNAs in all human diseases. This interdisciplinary journal will welcome research dealing with all aspects of non-coding RNAs-their biogenesis, regulation and role in disease progression. The focus of this journal will be to publish translational studies as well as well-designed basic studies with translational and clinical implications. The non-coding RNAs of particular interest will be microRNAs (miRNAs), small interfering RNAs (siRNAs), small nucleolar RNAs (snoRNAs), U-RNAs/small nuclear RNAs (snRNAs), exosomal/extracellular RNAs (exRNAs), Piwi-interacting RNAs (piRNAs) and long non-coding RNAs. Topics of interest will include, but not limited to: -Regulation of non-coding RNAs -Targets and regulatory functions of non-coding RNAs -Epigenetics and non-coding RNAs -Biological functions of non-coding RNAs -Non-coding RNAs as biomarkers -Non-coding RNA-based therapeutics -Prognostic value of non-coding RNAs -Pharmacological studies involving non-coding RNAs -Population based and epidemiological studies -Gene expression / proteomics / computational / pathway analysis-based studies on non-coding RNAs with functional validation -Novel strategies to manipulate non-coding RNAs expression and function -Clinical studies on evaluation of non-coding RNAs The journal will strive to disseminate cutting edge research, showcasing the ever-evolving importance of non-coding RNAs in modern day research and medicine.