治疗恶性黑色素瘤的智能水凝胶

Q1 Medicine
Guopu Chen , Xiyu Wang , Jiaye Li , Ye Xu , Yue Lin , Fengyuan Wang
{"title":"治疗恶性黑色素瘤的智能水凝胶","authors":"Guopu Chen ,&nbsp;Xiyu Wang ,&nbsp;Jiaye Li ,&nbsp;Ye Xu ,&nbsp;Yue Lin ,&nbsp;Fengyuan Wang","doi":"10.1016/j.engreg.2024.05.004","DOIUrl":null,"url":null,"abstract":"<div><p>Malignant melanoma (MM) is an extremely aggressive and fatal form of skin cancer that primarily affects the bottom layer of the epidermis and is associated with poor clinical outcomes. Early-stage MM is typically treated through surgical removal, while chemotherapy and radiotherapy are common conventional treatment options that come with harmful side effects. Emerging therapies such as immunotherapy, photodynamic therapy, biologic therapy, and photothermal therapy present hopeful options for treatment due to their effective and secure drug delivery methods. To address the limitations of current treatment options, advanced methods of drug delivery for subcutaneous MM are being developed, with hydrogels emerging as a promising alternative. To date, significant advancements have been made in the treatment of MM through the use of hydrogels-based drug delivery systems through focal plastering, injection, implantation, and microneedles. Recent research on hydrogel-based drug delivery systems that integrate multiple therapies for the treatment of subcutaneous MM is discussed in this review.</p></div>","PeriodicalId":72919,"journal":{"name":"Engineered regeneration","volume":"5 3","pages":"Pages 295-305"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666138124000343/pdfft?md5=be9fd21c46e2f1979b1f682e961bce43&pid=1-s2.0-S2666138124000343-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Intelligent hydrogels for treating malignant melanoma\",\"authors\":\"Guopu Chen ,&nbsp;Xiyu Wang ,&nbsp;Jiaye Li ,&nbsp;Ye Xu ,&nbsp;Yue Lin ,&nbsp;Fengyuan Wang\",\"doi\":\"10.1016/j.engreg.2024.05.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Malignant melanoma (MM) is an extremely aggressive and fatal form of skin cancer that primarily affects the bottom layer of the epidermis and is associated with poor clinical outcomes. Early-stage MM is typically treated through surgical removal, while chemotherapy and radiotherapy are common conventional treatment options that come with harmful side effects. Emerging therapies such as immunotherapy, photodynamic therapy, biologic therapy, and photothermal therapy present hopeful options for treatment due to their effective and secure drug delivery methods. To address the limitations of current treatment options, advanced methods of drug delivery for subcutaneous MM are being developed, with hydrogels emerging as a promising alternative. To date, significant advancements have been made in the treatment of MM through the use of hydrogels-based drug delivery systems through focal plastering, injection, implantation, and microneedles. Recent research on hydrogel-based drug delivery systems that integrate multiple therapies for the treatment of subcutaneous MM is discussed in this review.</p></div>\",\"PeriodicalId\":72919,\"journal\":{\"name\":\"Engineered regeneration\",\"volume\":\"5 3\",\"pages\":\"Pages 295-305\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666138124000343/pdfft?md5=be9fd21c46e2f1979b1f682e961bce43&pid=1-s2.0-S2666138124000343-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineered regeneration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666138124000343\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineered regeneration","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666138124000343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

恶性黑色素瘤(MM)是一种侵袭性极强的致命皮肤癌,主要侵犯表皮底层,临床疗效不佳。早期恶性黑色素瘤通常通过手术切除治疗,而化疗和放疗是常见的传统治疗方法,但会产生有害的副作用。免疫疗法、光动力疗法、生物疗法和光热疗法等新兴疗法因其有效、安全的给药方式,为治疗带来了希望。针对现有治疗方案的局限性,目前正在开发用于皮下 MM 的先进给药方法,其中水凝胶是一种很有前景的替代方法。迄今为止,通过病灶贴敷、注射、植入和微针等方法使用水凝胶给药系统治疗 MM 已取得重大进展。本综述将讨论水凝胶给药系统结合多种疗法治疗皮下 MM 的最新研究进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intelligent hydrogels for treating malignant melanoma

Malignant melanoma (MM) is an extremely aggressive and fatal form of skin cancer that primarily affects the bottom layer of the epidermis and is associated with poor clinical outcomes. Early-stage MM is typically treated through surgical removal, while chemotherapy and radiotherapy are common conventional treatment options that come with harmful side effects. Emerging therapies such as immunotherapy, photodynamic therapy, biologic therapy, and photothermal therapy present hopeful options for treatment due to their effective and secure drug delivery methods. To address the limitations of current treatment options, advanced methods of drug delivery for subcutaneous MM are being developed, with hydrogels emerging as a promising alternative. To date, significant advancements have been made in the treatment of MM through the use of hydrogels-based drug delivery systems through focal plastering, injection, implantation, and microneedles. Recent research on hydrogel-based drug delivery systems that integrate multiple therapies for the treatment of subcutaneous MM is discussed in this review.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineered regeneration
Engineered regeneration Biomaterials, Medicine and Dentistry (General), Biotechnology, Biomedical Engineering
CiteScore
22.90
自引率
0.00%
发文量
0
审稿时长
33 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信