动态图形结构熵的增量测量

IF 5.1 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Runze Yang , Hao Peng , Chunyang Liu , Angsheng Li
{"title":"动态图形结构熵的增量测量","authors":"Runze Yang ,&nbsp;Hao Peng ,&nbsp;Chunyang Liu ,&nbsp;Angsheng Li","doi":"10.1016/j.artint.2024.104175","DOIUrl":null,"url":null,"abstract":"<div><p>Structural entropy is a metric that measures the amount of information embedded in graph structure data under a strategy of hierarchical abstracting. To measure the structural entropy of a dynamic graph, we need to decode the optimal encoding tree corresponding to the best community partitioning for each snapshot. However, the current methods do not support dynamic encoding tree updating and incremental structural entropy computation. To address this issue, we propose <em>Incre-2dSE</em>, a novel incremental measurement framework that dynamically adjusts the community partitioning and efficiently computes the updated structural entropy for each updated graph. Specifically, <em>Incre-2dSE</em> includes incremental algorithms based on two dynamic adjustment strategies for two-dimensional encoding trees, i.e., <em>the naive adjustment strategy</em> and <em>the node-shifting adjustment strategy</em>, which support theoretical analysis of updated structural entropy and incrementally optimize community partitioning towards a lower structural entropy. We conduct extensive experiments on 3 artificial datasets generated by <em>Hawkes Process</em> and 3 real-world datasets. Experimental results confirm that our incremental algorithms effectively capture the dynamic evolution of the communities, reduce time consumption, and provide great interpretability.</p></div>","PeriodicalId":8434,"journal":{"name":"Artificial Intelligence","volume":"334 ","pages":"Article 104175"},"PeriodicalIF":5.1000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Incremental measurement of structural entropy for dynamic graphs\",\"authors\":\"Runze Yang ,&nbsp;Hao Peng ,&nbsp;Chunyang Liu ,&nbsp;Angsheng Li\",\"doi\":\"10.1016/j.artint.2024.104175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Structural entropy is a metric that measures the amount of information embedded in graph structure data under a strategy of hierarchical abstracting. To measure the structural entropy of a dynamic graph, we need to decode the optimal encoding tree corresponding to the best community partitioning for each snapshot. However, the current methods do not support dynamic encoding tree updating and incremental structural entropy computation. To address this issue, we propose <em>Incre-2dSE</em>, a novel incremental measurement framework that dynamically adjusts the community partitioning and efficiently computes the updated structural entropy for each updated graph. Specifically, <em>Incre-2dSE</em> includes incremental algorithms based on two dynamic adjustment strategies for two-dimensional encoding trees, i.e., <em>the naive adjustment strategy</em> and <em>the node-shifting adjustment strategy</em>, which support theoretical analysis of updated structural entropy and incrementally optimize community partitioning towards a lower structural entropy. We conduct extensive experiments on 3 artificial datasets generated by <em>Hawkes Process</em> and 3 real-world datasets. Experimental results confirm that our incremental algorithms effectively capture the dynamic evolution of the communities, reduce time consumption, and provide great interpretability.</p></div>\",\"PeriodicalId\":8434,\"journal\":{\"name\":\"Artificial Intelligence\",\"volume\":\"334 \",\"pages\":\"Article 104175\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0004370224001115\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0004370224001115","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

结构熵是一种度量指标,用于衡量在分层抽象策略下图结构数据所蕴含的信息量。要测量动态图的结构熵,我们需要解码与每个快照的最佳群落划分相对应的最优编码树。然而,目前的方法不支持动态编码树更新和增量结构熵计算。为了解决这个问题,我们提出了 Incre-2dSE,这是一个新颖的增量测量框架,可以动态调整社区划分,并为每个更新的图有效计算更新的结构熵。具体来说,Incre-2dSE 包括基于二维编码树的两种动态调整策略(即天真调整策略和节点移动调整策略)的增量算法,它们支持对更新结构熵的理论分析,并朝着更低的结构熵增量优化群落划分。我们在霍克斯过程生成的 3 个人工数据集和 3 个真实世界数据集上进行了大量实验。实验结果证实,我们的增量算法能有效捕捉社群的动态演化,减少时间消耗,并提供很好的可解释性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Incremental measurement of structural entropy for dynamic graphs

Structural entropy is a metric that measures the amount of information embedded in graph structure data under a strategy of hierarchical abstracting. To measure the structural entropy of a dynamic graph, we need to decode the optimal encoding tree corresponding to the best community partitioning for each snapshot. However, the current methods do not support dynamic encoding tree updating and incremental structural entropy computation. To address this issue, we propose Incre-2dSE, a novel incremental measurement framework that dynamically adjusts the community partitioning and efficiently computes the updated structural entropy for each updated graph. Specifically, Incre-2dSE includes incremental algorithms based on two dynamic adjustment strategies for two-dimensional encoding trees, i.e., the naive adjustment strategy and the node-shifting adjustment strategy, which support theoretical analysis of updated structural entropy and incrementally optimize community partitioning towards a lower structural entropy. We conduct extensive experiments on 3 artificial datasets generated by Hawkes Process and 3 real-world datasets. Experimental results confirm that our incremental algorithms effectively capture the dynamic evolution of the communities, reduce time consumption, and provide great interpretability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Artificial Intelligence
Artificial Intelligence 工程技术-计算机:人工智能
CiteScore
11.20
自引率
1.40%
发文量
118
审稿时长
8 months
期刊介绍: The Journal of Artificial Intelligence (AIJ) welcomes papers covering a broad spectrum of AI topics, including cognition, automated reasoning, computer vision, machine learning, and more. Papers should demonstrate advancements in AI and propose innovative approaches to AI problems. Additionally, the journal accepts papers describing AI applications, focusing on how new methods enhance performance rather than reiterating conventional approaches. In addition to regular papers, AIJ also accepts Research Notes, Research Field Reviews, Position Papers, Book Reviews, and summary papers on AI challenges and competitions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信