注入金纳米线的方形覆层 SPR-PCF 生物传感器用于检测各种癌细胞

IF 5.4 Q1 CHEMISTRY, ANALYTICAL
Atiqul Alam Chowdhury , Md Rezaul Hoque Khan , Mohammad Rakibul Islam , A.N.M. Iftekher , Md Sanowar Hosen , Mhamud Hasan Mim , Mirza Muntasir Nishat
{"title":"注入金纳米线的方形覆层 SPR-PCF 生物传感器用于检测各种癌细胞","authors":"Atiqul Alam Chowdhury ,&nbsp;Md Rezaul Hoque Khan ,&nbsp;Mohammad Rakibul Islam ,&nbsp;A.N.M. Iftekher ,&nbsp;Md Sanowar Hosen ,&nbsp;Mhamud Hasan Mim ,&nbsp;Mirza Muntasir Nishat","doi":"10.1016/j.sbsr.2024.100670","DOIUrl":null,"url":null,"abstract":"<div><p>This research work introduces a Surface Plasmon Resonance (SPR) based Photonic Crystal Fiber (PCF) sensor using gold nanowires as plasmonic material designed for the detection of various cancer cells, boasting remarkable sensitivity and ease of fabrication. The sensor's structure was devised and analyzed using the Finite Element Method (FEM) of COMSOL v5.5, with a focus on exploring the impact of varying geometric parameters on its overall performance. The simulation utilized extremely fine mesh elements to ensure the utmost accuracy. Excitation between the core and plasmonic modes is achieved using Gold (Au) nanowires. The determination of the sensor's wavelength sensitivity involves assessing the resonance wavelength shift between samples of normal and cancerous cells. Simultaneously, the measurement of amplitude sensitivity is accomplished through a comparison of the amplitudes associated with their respective confinement losses. Various parameters of the PCF were varied during the experimentation, leading to the achievement of exceptionally high Amplitude Sensitivity (AS) of <span><math><mo>−</mo><mn>273.16</mn></math></span> RIU<sup>−1</sup>, <span><math><mo>−</mo><mn>286.58</mn></math></span> RIU<sup>−1</sup>, <span><math><mo>−</mo><mn>455.59</mn></math></span> RIU<sup>−1</sup>, <span><math><mo>−</mo><mn>698.76</mn></math></span> RIU<sup>−1</sup>, <span><math><mo>−</mo><mn>1172.72</mn></math></span> RIU<sup>−1</sup> and <span><math><mo>−</mo><mn>1971.30</mn></math></span> RIU<sup>−1</sup> for Skin Cancer, Cervical Cancer, Blood Cancer, Adrenal Gland Cancer, Breast Type-1 Cancer and Breast Type-2 Cancer respectively. Additionally, the Wavelength Sensitivity (WS) values were found to be <span><math><mn>6500</mn></math></span> nm/RIU, <span><math><mn>14583.33</mn></math></span> nm/RIU, <span><math><mn>16428.57</mn></math></span> nm/RIU, <span><math><mn>25714.28</mn></math></span> nm/RIU, <span><math><mn>32857.14</mn></math></span> nm/RIU, and <span><math><mn>35714.28</mn></math></span> nm/RIU for the same cancer types, respectively. The achieved resolutions for wavelength sensitivity are <span><math><mn>1.54</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>5</mn></mrow></msup></math></span> RIU, <span><math><mn>6.86</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>6</mn></mrow></msup></math></span> RIU, <span><math><mn>6.09</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>6</mn></mrow></msup></math></span> RIU, <span><math><mn>3.89</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>6</mn></mrow></msup></math></span> RIU, <span><math><mn>3.04</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>6</mn></mrow></msup></math></span> RIU and <span><math><mn>2.80</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>6</mn></mrow></msup></math></span> RIU, while the resolutions for amplitude sensitivity are <span><math><mn>7.32</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>5</mn></mrow></msup></math></span> RIU, <span><math><mn>8.37</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>5</mn></mrow></msup></math></span> RIU, <span><math><mn>3.07</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>5</mn></mrow></msup></math></span> RIU, <span><math><mn>2.00</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>5</mn></mrow></msup></math></span> RIU, <span><math><mn>1.19</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>5</mn></mrow></msup></math></span> RIU and <span><math><mn>7.10</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>6</mn></mrow></msup></math></span> RIU for the respective cancer types mentioned above. The design of the presented biosensor is notably uncomplicated and can be readily manufactured using contemporary fabrication techniques. In summary, the remarkable sensitivity exhibited by the proposed SPR-based PCF (SPR-PCF) biosensor, shows significant potential for enhancing the detection of cancer cells.</p></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214180424000527/pdfft?md5=89c3e763e14f3584e3105896c5d29337&pid=1-s2.0-S2214180424000527-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Gold nanowire-infused square-clad SPR-PCF biosensor for detection of various cancer cells\",\"authors\":\"Atiqul Alam Chowdhury ,&nbsp;Md Rezaul Hoque Khan ,&nbsp;Mohammad Rakibul Islam ,&nbsp;A.N.M. Iftekher ,&nbsp;Md Sanowar Hosen ,&nbsp;Mhamud Hasan Mim ,&nbsp;Mirza Muntasir Nishat\",\"doi\":\"10.1016/j.sbsr.2024.100670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This research work introduces a Surface Plasmon Resonance (SPR) based Photonic Crystal Fiber (PCF) sensor using gold nanowires as plasmonic material designed for the detection of various cancer cells, boasting remarkable sensitivity and ease of fabrication. The sensor's structure was devised and analyzed using the Finite Element Method (FEM) of COMSOL v5.5, with a focus on exploring the impact of varying geometric parameters on its overall performance. The simulation utilized extremely fine mesh elements to ensure the utmost accuracy. Excitation between the core and plasmonic modes is achieved using Gold (Au) nanowires. The determination of the sensor's wavelength sensitivity involves assessing the resonance wavelength shift between samples of normal and cancerous cells. Simultaneously, the measurement of amplitude sensitivity is accomplished through a comparison of the amplitudes associated with their respective confinement losses. Various parameters of the PCF were varied during the experimentation, leading to the achievement of exceptionally high Amplitude Sensitivity (AS) of <span><math><mo>−</mo><mn>273.16</mn></math></span> RIU<sup>−1</sup>, <span><math><mo>−</mo><mn>286.58</mn></math></span> RIU<sup>−1</sup>, <span><math><mo>−</mo><mn>455.59</mn></math></span> RIU<sup>−1</sup>, <span><math><mo>−</mo><mn>698.76</mn></math></span> RIU<sup>−1</sup>, <span><math><mo>−</mo><mn>1172.72</mn></math></span> RIU<sup>−1</sup> and <span><math><mo>−</mo><mn>1971.30</mn></math></span> RIU<sup>−1</sup> for Skin Cancer, Cervical Cancer, Blood Cancer, Adrenal Gland Cancer, Breast Type-1 Cancer and Breast Type-2 Cancer respectively. Additionally, the Wavelength Sensitivity (WS) values were found to be <span><math><mn>6500</mn></math></span> nm/RIU, <span><math><mn>14583.33</mn></math></span> nm/RIU, <span><math><mn>16428.57</mn></math></span> nm/RIU, <span><math><mn>25714.28</mn></math></span> nm/RIU, <span><math><mn>32857.14</mn></math></span> nm/RIU, and <span><math><mn>35714.28</mn></math></span> nm/RIU for the same cancer types, respectively. The achieved resolutions for wavelength sensitivity are <span><math><mn>1.54</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>5</mn></mrow></msup></math></span> RIU, <span><math><mn>6.86</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>6</mn></mrow></msup></math></span> RIU, <span><math><mn>6.09</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>6</mn></mrow></msup></math></span> RIU, <span><math><mn>3.89</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>6</mn></mrow></msup></math></span> RIU, <span><math><mn>3.04</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>6</mn></mrow></msup></math></span> RIU and <span><math><mn>2.80</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>6</mn></mrow></msup></math></span> RIU, while the resolutions for amplitude sensitivity are <span><math><mn>7.32</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>5</mn></mrow></msup></math></span> RIU, <span><math><mn>8.37</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>5</mn></mrow></msup></math></span> RIU, <span><math><mn>3.07</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>5</mn></mrow></msup></math></span> RIU, <span><math><mn>2.00</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>5</mn></mrow></msup></math></span> RIU, <span><math><mn>1.19</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>5</mn></mrow></msup></math></span> RIU and <span><math><mn>7.10</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>6</mn></mrow></msup></math></span> RIU for the respective cancer types mentioned above. The design of the presented biosensor is notably uncomplicated and can be readily manufactured using contemporary fabrication techniques. In summary, the remarkable sensitivity exhibited by the proposed SPR-based PCF (SPR-PCF) biosensor, shows significant potential for enhancing the detection of cancer cells.</p></div>\",\"PeriodicalId\":424,\"journal\":{\"name\":\"Sensing and Bio-Sensing Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2214180424000527/pdfft?md5=89c3e763e14f3584e3105896c5d29337&pid=1-s2.0-S2214180424000527-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensing and Bio-Sensing Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214180424000527\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensing and Bio-Sensing Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214180424000527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

这项研究工作介绍了一种基于表面等离子体共振(SPR)的光子晶体光纤(PCF)传感器,该传感器使用金纳米线作为等离子体材料,设计用于检测各种癌细胞,灵敏度高且易于制造。该传感器的结构是利用 COMSOL v5.5 的有限元法 (FEM) 设计和分析的,重点是探索不同几何参数对其整体性能的影响。模拟采用了极其精细的网格元素,以确保最高精度。核心模式和等离子模式之间的激励是通过金(Au)纳米线实现的。传感器波长灵敏度的测定包括评估正常细胞和癌细胞样本之间的共振波长偏移。同时,振幅灵敏度的测量是通过比较与各自的约束损耗相关的振幅来完成的。在实验过程中,PCF 的各种参数都发生了变化,从而使皮肤癌、宫颈癌、血癌、肾上腺癌、乳腺癌 1 型和乳腺癌 2 型的振幅灵敏度 (AS) 分别达到了极高的 -273.16 RIU-1、-286.58 RIU-1、-455.59 RIU-1、-698.76 RIU-1、-1172.72 RIU-1 和 -1971.30 RIU-1。此外,同一癌症类型的波长灵敏度 (WS) 值分别为 6500 nm/RIU、14583.33 nm/RIU、16428.57 nm/RIU、25714.28 nm/RIU、32857.14 nm/RIU 和 35714.28 nm/RIU。波长灵敏度的分辨率分别为 1.54×10-5 RIU、6.86×10-6 RIU、6.09×10-6 RIU、3.89×10-6 RIU、3.04×10-6 RIU 和 2.80×10-6 RIU。32×10-5 RIU、8.37×10-5 RIU、3.07×10-5 RIU、2.00×10-5 RIU、1.19×10-5 RIU 和 7.10×10-6 RIU。所展示的生物传感器的设计显然并不复杂,而且可以利用现代制造技术轻松制造。总之,所提出的基于 SPR 的 PCF(SPR-PCF)生物传感器所表现出的卓越灵敏度显示了其在增强癌细胞检测方面的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gold nanowire-infused square-clad SPR-PCF biosensor for detection of various cancer cells

This research work introduces a Surface Plasmon Resonance (SPR) based Photonic Crystal Fiber (PCF) sensor using gold nanowires as plasmonic material designed for the detection of various cancer cells, boasting remarkable sensitivity and ease of fabrication. The sensor's structure was devised and analyzed using the Finite Element Method (FEM) of COMSOL v5.5, with a focus on exploring the impact of varying geometric parameters on its overall performance. The simulation utilized extremely fine mesh elements to ensure the utmost accuracy. Excitation between the core and plasmonic modes is achieved using Gold (Au) nanowires. The determination of the sensor's wavelength sensitivity involves assessing the resonance wavelength shift between samples of normal and cancerous cells. Simultaneously, the measurement of amplitude sensitivity is accomplished through a comparison of the amplitudes associated with their respective confinement losses. Various parameters of the PCF were varied during the experimentation, leading to the achievement of exceptionally high Amplitude Sensitivity (AS) of 273.16 RIU−1, 286.58 RIU−1, 455.59 RIU−1, 698.76 RIU−1, 1172.72 RIU−1 and 1971.30 RIU−1 for Skin Cancer, Cervical Cancer, Blood Cancer, Adrenal Gland Cancer, Breast Type-1 Cancer and Breast Type-2 Cancer respectively. Additionally, the Wavelength Sensitivity (WS) values were found to be 6500 nm/RIU, 14583.33 nm/RIU, 16428.57 nm/RIU, 25714.28 nm/RIU, 32857.14 nm/RIU, and 35714.28 nm/RIU for the same cancer types, respectively. The achieved resolutions for wavelength sensitivity are 1.54×105 RIU, 6.86×106 RIU, 6.09×106 RIU, 3.89×106 RIU, 3.04×106 RIU and 2.80×106 RIU, while the resolutions for amplitude sensitivity are 7.32×105 RIU, 8.37×105 RIU, 3.07×105 RIU, 2.00×105 RIU, 1.19×105 RIU and 7.10×106 RIU for the respective cancer types mentioned above. The design of the presented biosensor is notably uncomplicated and can be readily manufactured using contemporary fabrication techniques. In summary, the remarkable sensitivity exhibited by the proposed SPR-based PCF (SPR-PCF) biosensor, shows significant potential for enhancing the detection of cancer cells.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sensing and Bio-Sensing Research
Sensing and Bio-Sensing Research Engineering-Electrical and Electronic Engineering
CiteScore
10.70
自引率
3.80%
发文量
68
审稿时长
87 days
期刊介绍: Sensing and Bio-Sensing Research is an open access journal dedicated to the research, design, development, and application of bio-sensing and sensing technologies. The editors will accept research papers, reviews, field trials, and validation studies that are of significant relevance. These submissions should describe new concepts, enhance understanding of the field, or offer insights into the practical application, manufacturing, and commercialization of bio-sensing and sensing technologies. The journal covers a wide range of topics, including sensing principles and mechanisms, new materials development for transducers and recognition components, fabrication technology, and various types of sensors such as optical, electrochemical, mass-sensitive, gas, biosensors, and more. It also includes environmental, process control, and biomedical applications, signal processing, chemometrics, optoelectronic, mechanical, thermal, and magnetic sensors, as well as interface electronics. Additionally, it covers sensor systems and applications, µTAS (Micro Total Analysis Systems), development of solid-state devices for transducing physical signals, and analytical devices incorporating biological materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信