{"title":"量子点薄膜与非封装叠层中的氧化锌(ZnMgO)相邻时的渐进淬灭发光现象","authors":"Atefeh Ghorbani, Hany Aziz","doi":"10.1016/j.orgel.2024.107087","DOIUrl":null,"url":null,"abstract":"<div><p>ZnMgO nanoparticles (NPs) are being increasingly used as the electron transport layer (ETL) in state-of-the-art quantum-dot light-emitting devices (QLEDs) instead of ZnO. However, the impact of ZnMgO on the luminescence properties of quantum dots (QDs) is much less understood. Here, we compare ZnMgO and ZnO NPs for their quenching effect on Cd-based QDs photoluminescence (PL), immediately and over time. Time-resolved photoluminescence (TRPL) and steady-state PL results show that ZnMgO NPs decreases the QDs’ luminescence more than ZnO NPs and that the behavior continues progressively over time. The surface topography of the samples containing different ETLs is studied using atomic force microscopy (AFM) and optical PL images. Additionally, time of flight secondary ion mass spectroscopy (TOF-SIMS) measurements are conducted to investigate the potential diffusion of some species from ETL into the QDs layer. The results confirm that morphological changes and out-diffusion of some species from the ZnMgO layer can likely play a role in the QDs PL quenching. This study sheds light on the limitations of ZnMgO for the long-term stability of QLEDs, specifically for blue QLEDs where using ZnMgO is essential for efficient electron injection.</p></div>","PeriodicalId":399,"journal":{"name":"Organic Electronics","volume":"131 ","pages":"Article 107087"},"PeriodicalIF":2.7000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1566119924000983/pdfft?md5=727a6e599d1c56c4cc38163fa67ddb44&pid=1-s2.0-S1566119924000983-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Progressive quenching of luminescence from quantum dot thin films in proximity with ZnMgO in unencapsulated stacks\",\"authors\":\"Atefeh Ghorbani, Hany Aziz\",\"doi\":\"10.1016/j.orgel.2024.107087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>ZnMgO nanoparticles (NPs) are being increasingly used as the electron transport layer (ETL) in state-of-the-art quantum-dot light-emitting devices (QLEDs) instead of ZnO. However, the impact of ZnMgO on the luminescence properties of quantum dots (QDs) is much less understood. Here, we compare ZnMgO and ZnO NPs for their quenching effect on Cd-based QDs photoluminescence (PL), immediately and over time. Time-resolved photoluminescence (TRPL) and steady-state PL results show that ZnMgO NPs decreases the QDs’ luminescence more than ZnO NPs and that the behavior continues progressively over time. The surface topography of the samples containing different ETLs is studied using atomic force microscopy (AFM) and optical PL images. Additionally, time of flight secondary ion mass spectroscopy (TOF-SIMS) measurements are conducted to investigate the potential diffusion of some species from ETL into the QDs layer. The results confirm that morphological changes and out-diffusion of some species from the ZnMgO layer can likely play a role in the QDs PL quenching. This study sheds light on the limitations of ZnMgO for the long-term stability of QLEDs, specifically for blue QLEDs where using ZnMgO is essential for efficient electron injection.</p></div>\",\"PeriodicalId\":399,\"journal\":{\"name\":\"Organic Electronics\",\"volume\":\"131 \",\"pages\":\"Article 107087\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1566119924000983/pdfft?md5=727a6e599d1c56c4cc38163fa67ddb44&pid=1-s2.0-S1566119924000983-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organic Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1566119924000983\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Electronics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566119924000983","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Progressive quenching of luminescence from quantum dot thin films in proximity with ZnMgO in unencapsulated stacks
ZnMgO nanoparticles (NPs) are being increasingly used as the electron transport layer (ETL) in state-of-the-art quantum-dot light-emitting devices (QLEDs) instead of ZnO. However, the impact of ZnMgO on the luminescence properties of quantum dots (QDs) is much less understood. Here, we compare ZnMgO and ZnO NPs for their quenching effect on Cd-based QDs photoluminescence (PL), immediately and over time. Time-resolved photoluminescence (TRPL) and steady-state PL results show that ZnMgO NPs decreases the QDs’ luminescence more than ZnO NPs and that the behavior continues progressively over time. The surface topography of the samples containing different ETLs is studied using atomic force microscopy (AFM) and optical PL images. Additionally, time of flight secondary ion mass spectroscopy (TOF-SIMS) measurements are conducted to investigate the potential diffusion of some species from ETL into the QDs layer. The results confirm that morphological changes and out-diffusion of some species from the ZnMgO layer can likely play a role in the QDs PL quenching. This study sheds light on the limitations of ZnMgO for the long-term stability of QLEDs, specifically for blue QLEDs where using ZnMgO is essential for efficient electron injection.
期刊介绍:
Organic Electronics is a journal whose primary interdisciplinary focus is on materials and phenomena related to organic devices such as light emitting diodes, thin film transistors, photovoltaic cells, sensors, memories, etc.
Papers suitable for publication in this journal cover such topics as photoconductive and electronic properties of organic materials, thin film structures and characterization in the context of organic devices, charge and exciton transport, organic electronic and optoelectronic devices.