R.P. van Rosmalen , S. Moreno-Paz , Z.E. Duman-Özdamar, M. Suarez-Diez
{"title":"CFSA:作为应变设计指南的通量取样比较分析","authors":"R.P. van Rosmalen , S. Moreno-Paz , Z.E. Duman-Özdamar, M. Suarez-Diez","doi":"10.1016/j.mec.2024.e00244","DOIUrl":null,"url":null,"abstract":"<div><p>Genome-scale metabolic models of microbial metabolism have extensively been used to guide the design of microbial cell factories, still, many of the available strain design algorithms often fail to produce a reduced list of targets for improved performance that can be implemented and validated in a step-wise manner. We present Comparative Flux Sampling Analysis (CFSA), a strain design method based on the extensive comparison of complete metabolic spaces corresponding to maximal or near-maximal growth and production phenotypes. The comparison is complemented by statistical analysis to identify reactions with altered flux that are suggested as targets for genetic interventions including up-regulations, down-regulations and gene deletions. We applied CFSA to the production of lipids by <em>Cutaneotrichosporon oleaginosus</em> and naringenin by <em>Saccharomyces cerevisiae</em> identifying engineering targets in agreement with previous studies as well as new interventions. CFSA is an easy-to-use, robust method that suggests potential metabolic engineering targets for growth-uncoupled production that can be applied to the design of microbial cell factories.</p></div>","PeriodicalId":18695,"journal":{"name":"Metabolic Engineering Communications","volume":"19 ","pages":"Article e00244"},"PeriodicalIF":3.7000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214030124000130/pdfft?md5=69d0fb5da6998ef5e347063552f98736&pid=1-s2.0-S2214030124000130-main.pdf","citationCount":"0","resultStr":"{\"title\":\"CFSA: Comparative flux sampling analysis as a guide for strain design\",\"authors\":\"R.P. van Rosmalen , S. Moreno-Paz , Z.E. Duman-Özdamar, M. Suarez-Diez\",\"doi\":\"10.1016/j.mec.2024.e00244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Genome-scale metabolic models of microbial metabolism have extensively been used to guide the design of microbial cell factories, still, many of the available strain design algorithms often fail to produce a reduced list of targets for improved performance that can be implemented and validated in a step-wise manner. We present Comparative Flux Sampling Analysis (CFSA), a strain design method based on the extensive comparison of complete metabolic spaces corresponding to maximal or near-maximal growth and production phenotypes. The comparison is complemented by statistical analysis to identify reactions with altered flux that are suggested as targets for genetic interventions including up-regulations, down-regulations and gene deletions. We applied CFSA to the production of lipids by <em>Cutaneotrichosporon oleaginosus</em> and naringenin by <em>Saccharomyces cerevisiae</em> identifying engineering targets in agreement with previous studies as well as new interventions. CFSA is an easy-to-use, robust method that suggests potential metabolic engineering targets for growth-uncoupled production that can be applied to the design of microbial cell factories.</p></div>\",\"PeriodicalId\":18695,\"journal\":{\"name\":\"Metabolic Engineering Communications\",\"volume\":\"19 \",\"pages\":\"Article e00244\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2214030124000130/pdfft?md5=69d0fb5da6998ef5e347063552f98736&pid=1-s2.0-S2214030124000130-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metabolic Engineering Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214030124000130\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic Engineering Communications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214030124000130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
CFSA: Comparative flux sampling analysis as a guide for strain design
Genome-scale metabolic models of microbial metabolism have extensively been used to guide the design of microbial cell factories, still, many of the available strain design algorithms often fail to produce a reduced list of targets for improved performance that can be implemented and validated in a step-wise manner. We present Comparative Flux Sampling Analysis (CFSA), a strain design method based on the extensive comparison of complete metabolic spaces corresponding to maximal or near-maximal growth and production phenotypes. The comparison is complemented by statistical analysis to identify reactions with altered flux that are suggested as targets for genetic interventions including up-regulations, down-regulations and gene deletions. We applied CFSA to the production of lipids by Cutaneotrichosporon oleaginosus and naringenin by Saccharomyces cerevisiae identifying engineering targets in agreement with previous studies as well as new interventions. CFSA is an easy-to-use, robust method that suggests potential metabolic engineering targets for growth-uncoupled production that can be applied to the design of microbial cell factories.
期刊介绍:
Metabolic Engineering Communications, a companion title to Metabolic Engineering (MBE), is devoted to publishing original research in the areas of metabolic engineering, synthetic biology, computational biology and systems biology for problems related to metabolism and the engineering of metabolism for the production of fuels, chemicals, and pharmaceuticals. The journal will carry articles on the design, construction, and analysis of biological systems ranging from pathway components to biological complexes and genomes (including genomic, analytical and bioinformatics methods) in suitable host cells to allow them to produce novel compounds of industrial and medical interest. Demonstrations of regulatory designs and synthetic circuits that alter the performance of biochemical pathways and cellular processes will also be presented. Metabolic Engineering Communications complements MBE by publishing articles that are either shorter than those published in the full journal, or which describe key elements of larger metabolic engineering efforts.