{"title":"全变异收敛保留了条件独立性","authors":"Steffen Lauritzen","doi":"10.1016/j.spl.2024.110200","DOIUrl":null,"url":null,"abstract":"<div><p>This note establishes that if a sequence <span><math><mrow><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><mi>n</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>…</mo></mrow></math></span> of probability measures converges in total variation to the limiting probability measure <span><math><mi>P</mi></math></span>, and <span><math><mi>σ</mi></math></span>-algebras <span><math><mi>A</mi></math></span> and <span><math><mi>B</mi></math></span> are conditionally independent given <span><math><mi>H</mi></math></span> with respect to <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> for all <span><math><mi>n</mi></math></span>, then they are also conditionally independent with respect to the limiting measure <span><math><mi>P</mi></math></span>. As a corollary, this also extends to pointwise convergence of densities to a density.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S016771522400169X/pdfft?md5=c56dd1436844d549837b401ab4b369b9&pid=1-s2.0-S016771522400169X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Total variation convergence preserves conditional independence\",\"authors\":\"Steffen Lauritzen\",\"doi\":\"10.1016/j.spl.2024.110200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This note establishes that if a sequence <span><math><mrow><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><mi>n</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>…</mo></mrow></math></span> of probability measures converges in total variation to the limiting probability measure <span><math><mi>P</mi></math></span>, and <span><math><mi>σ</mi></math></span>-algebras <span><math><mi>A</mi></math></span> and <span><math><mi>B</mi></math></span> are conditionally independent given <span><math><mi>H</mi></math></span> with respect to <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> for all <span><math><mi>n</mi></math></span>, then they are also conditionally independent with respect to the limiting measure <span><math><mi>P</mi></math></span>. As a corollary, this also extends to pointwise convergence of densities to a density.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S016771522400169X/pdfft?md5=c56dd1436844d549837b401ab4b369b9&pid=1-s2.0-S016771522400169X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016771522400169X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016771522400169X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本注释指出,如果概率度量序列 Pn,n=1,... 在总变化中收敛于极限概率度量 P,并且σ代数 A 和 B 在给定 H 的条件下对于所有 n 的 Pn 是独立的,那么它们对于极限度量 P 也是条件独立的。
Total variation convergence preserves conditional independence
This note establishes that if a sequence of probability measures converges in total variation to the limiting probability measure , and -algebras and are conditionally independent given with respect to for all , then they are also conditionally independent with respect to the limiting measure . As a corollary, this also extends to pointwise convergence of densities to a density.