{"title":"耦合布尔格斯方程数值解的优化算法","authors":"Anurag Kaur , V. Kanwar , Higinio Ramos","doi":"10.1016/j.apnum.2024.06.019","DOIUrl":null,"url":null,"abstract":"<div><p>Investigation of the solutions of the coupled viscous Burgers system is crucial for realizing and understanding some physical phenomena in applied sciences. Particularly, Burgers equations are used in the modeling of fluid mechanics and nonlinear acoustics. In the present study, a modified meshless quadrature method based on radial basis functions is used to discretize the partial derivatives in the spatial variable. A technique to find the best value of the shape parameter is introduced. A high-resolution optimized hybrid block method is then used to solve the problem in the temporal variable. To validate the proposed method, several test problems are considered and the simulated results are compared with exact solutions and previous works. Moreover, a sensitivity analysis for parameter <em>c</em> is conducted, and the unconditional stability of the proposed algorithm has been validated.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An optimized algorithm for numerical solution of coupled Burgers equations\",\"authors\":\"Anurag Kaur , V. Kanwar , Higinio Ramos\",\"doi\":\"10.1016/j.apnum.2024.06.019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Investigation of the solutions of the coupled viscous Burgers system is crucial for realizing and understanding some physical phenomena in applied sciences. Particularly, Burgers equations are used in the modeling of fluid mechanics and nonlinear acoustics. In the present study, a modified meshless quadrature method based on radial basis functions is used to discretize the partial derivatives in the spatial variable. A technique to find the best value of the shape parameter is introduced. A high-resolution optimized hybrid block method is then used to solve the problem in the temporal variable. To validate the proposed method, several test problems are considered and the simulated results are compared with exact solutions and previous works. Moreover, a sensitivity analysis for parameter <em>c</em> is conducted, and the unconditional stability of the proposed algorithm has been validated.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168927424001673\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424001673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
摘要
研究耦合粘性布尔格斯系统的解对于实现和理解应用科学中的某些物理现象至关重要。特别是在流体力学和非线性声学建模中,布尔格斯方程被广泛应用。本研究采用基于径向基函数的修正无网格正交法来离散空间变量中的偏导数。研究还引入了一种寻找形状参数最佳值的技术。然后使用高分辨率优化混合分块法解决时间变量中的问题。为了验证所提出的方法,我们考虑了几个测试问题,并将模拟结果与精确解法和以前的工作进行了比较。此外,还对参数 c 进行了敏感性分析,并验证了所提算法的无条件稳定性。
An optimized algorithm for numerical solution of coupled Burgers equations
Investigation of the solutions of the coupled viscous Burgers system is crucial for realizing and understanding some physical phenomena in applied sciences. Particularly, Burgers equations are used in the modeling of fluid mechanics and nonlinear acoustics. In the present study, a modified meshless quadrature method based on radial basis functions is used to discretize the partial derivatives in the spatial variable. A technique to find the best value of the shape parameter is introduced. A high-resolution optimized hybrid block method is then used to solve the problem in the temporal variable. To validate the proposed method, several test problems are considered and the simulated results are compared with exact solutions and previous works. Moreover, a sensitivity analysis for parameter c is conducted, and the unconditional stability of the proposed algorithm has been validated.