论 DDE 和 PDDE θ 方法的稳定性

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Alejandro Rodríguez-Fernández , Jesús Martín-Vaquero
{"title":"论 DDE 和 PDDE θ 方法的稳定性","authors":"Alejandro Rodríguez-Fernández ,&nbsp;Jesús Martín-Vaquero","doi":"10.1016/j.apnum.2024.06.018","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, the stability of <em>θ</em>-methods for delay differential equations is studied based on the test equation <span><math><msup><mrow><mi>y</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mo>−</mo><mi>A</mi><mi>y</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>+</mo><mi>B</mi><mi>y</mi><mo>(</mo><mi>t</mi><mo>−</mo><mi>τ</mi><mo>)</mo></math></span>, where <em>τ</em> is a constant delay and <em>A</em> is a positive definite matrix. It is mainly considered the case where the matrices <em>A</em> and <em>B</em> are not simultaneosly diagonalizable and the concept of field of values is used to prove a sufficient condition for unconditional stability of these methods and another condition which also guarantees their stability, but according to the step size. The results obtained are also simplified for the case where the matrices <em>A</em> and <em>B</em> are simultaneously diagonalizable and compared with other similar works for the general case. Several numerical examples in which the theory discussed here is applied to parabolic problems given by partial delay differential equations with a diffusion term and a delayed term are presented, too.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the stability of θ-methods for DDEs and PDDEs\",\"authors\":\"Alejandro Rodríguez-Fernández ,&nbsp;Jesús Martín-Vaquero\",\"doi\":\"10.1016/j.apnum.2024.06.018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, the stability of <em>θ</em>-methods for delay differential equations is studied based on the test equation <span><math><msup><mrow><mi>y</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mo>−</mo><mi>A</mi><mi>y</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>+</mo><mi>B</mi><mi>y</mi><mo>(</mo><mi>t</mi><mo>−</mo><mi>τ</mi><mo>)</mo></math></span>, where <em>τ</em> is a constant delay and <em>A</em> is a positive definite matrix. It is mainly considered the case where the matrices <em>A</em> and <em>B</em> are not simultaneosly diagonalizable and the concept of field of values is used to prove a sufficient condition for unconditional stability of these methods and another condition which also guarantees their stability, but according to the step size. The results obtained are also simplified for the case where the matrices <em>A</em> and <em>B</em> are simultaneously diagonalizable and compared with other similar works for the general case. Several numerical examples in which the theory discussed here is applied to parabolic problems given by partial delay differential equations with a diffusion term and a delayed term are presented, too.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168927424001661\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424001661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本文基于检验方程 y′(t)=-Ay(t)+By(t-τ)(其中 τ 为常数延迟,A 为正定矩阵)研究了延迟微分方程的 θ 方法的稳定性。主要考虑矩阵 A 和 B 不能同时对角化的情况,并利用值域概念证明了这些方法无条件稳定性的充分条件和另一个也能保证其稳定性的条件,但取决于步长。对于矩阵 A 和 B 同时可对角化的情况,所获得的结果也进行了简化,并与其他针对一般情况的类似著作进行了比较。此外,还介绍了几个数值示例,这些示例将本文讨论的理论应用于带有扩散项和延迟项的偏延迟微分方程给出的抛物问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the stability of θ-methods for DDEs and PDDEs

In this paper, the stability of θ-methods for delay differential equations is studied based on the test equation y(t)=Ay(t)+By(tτ), where τ is a constant delay and A is a positive definite matrix. It is mainly considered the case where the matrices A and B are not simultaneosly diagonalizable and the concept of field of values is used to prove a sufficient condition for unconditional stability of these methods and another condition which also guarantees their stability, but according to the step size. The results obtained are also simplified for the case where the matrices A and B are simultaneously diagonalizable and compared with other similar works for the general case. Several numerical examples in which the theory discussed here is applied to parabolic problems given by partial delay differential equations with a diffusion term and a delayed term are presented, too.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信