Asma'a Almazaydeh , Mike Behrisch , Edith Vargas-García , Andreas Wachtel
{"title":"整数分区网格中的箭头关系","authors":"Asma'a Almazaydeh , Mike Behrisch , Edith Vargas-García , Andreas Wachtel","doi":"10.1016/j.ijar.2024.109244","DOIUrl":null,"url":null,"abstract":"<div><p>We give a complete characterisation of the single and double arrow relations of the standard context <span><math><mi>K</mi><mo>(</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span> of the lattice <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> of partitions of any positive integer <em>n</em> under the dominance order, thereby addressing an open question of Ganter, 2020/2022.</p></div>","PeriodicalId":13842,"journal":{"name":"International Journal of Approximate Reasoning","volume":"172 ","pages":"Article 109244"},"PeriodicalIF":3.2000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0888613X24001312/pdfft?md5=e1fa6c029a424860650dab1c3c697da8&pid=1-s2.0-S0888613X24001312-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Arrow relations in lattices of integer partitions\",\"authors\":\"Asma'a Almazaydeh , Mike Behrisch , Edith Vargas-García , Andreas Wachtel\",\"doi\":\"10.1016/j.ijar.2024.109244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We give a complete characterisation of the single and double arrow relations of the standard context <span><math><mi>K</mi><mo>(</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span> of the lattice <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> of partitions of any positive integer <em>n</em> under the dominance order, thereby addressing an open question of Ganter, 2020/2022.</p></div>\",\"PeriodicalId\":13842,\"journal\":{\"name\":\"International Journal of Approximate Reasoning\",\"volume\":\"172 \",\"pages\":\"Article 109244\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0888613X24001312/pdfft?md5=e1fa6c029a424860650dab1c3c697da8&pid=1-s2.0-S0888613X24001312-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Approximate Reasoning\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0888613X24001312\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Approximate Reasoning","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888613X24001312","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
摘要
我们给出了任意正整数 n 的分格 Ln 的标准上下文 K(Ln) 在支配阶下的单箭头和双箭头关系的完整特征,从而解决了甘特 2020/2022 年的一个未决问题。
We give a complete characterisation of the single and double arrow relations of the standard context of the lattice of partitions of any positive integer n under the dominance order, thereby addressing an open question of Ganter, 2020/2022.
期刊介绍:
The International Journal of Approximate Reasoning is intended to serve as a forum for the treatment of imprecision and uncertainty in Artificial and Computational Intelligence, covering both the foundations of uncertainty theories, and the design of intelligent systems for scientific and engineering applications. It publishes high-quality research papers describing theoretical developments or innovative applications, as well as review articles on topics of general interest.
Relevant topics include, but are not limited to, probabilistic reasoning and Bayesian networks, imprecise probabilities, random sets, belief functions (Dempster-Shafer theory), possibility theory, fuzzy sets, rough sets, decision theory, non-additive measures and integrals, qualitative reasoning about uncertainty, comparative probability orderings, game-theoretic probability, default reasoning, nonstandard logics, argumentation systems, inconsistency tolerant reasoning, elicitation techniques, philosophical foundations and psychological models of uncertain reasoning.
Domains of application for uncertain reasoning systems include risk analysis and assessment, information retrieval and database design, information fusion, machine learning, data and web mining, computer vision, image and signal processing, intelligent data analysis, statistics, multi-agent systems, etc.