Chen Dong , Yi Wang , Kanghui Jia , Dan Song , Xiaolan Song , Chongwei An
{"title":"高活性炸药基纳米硼微球的制备与表征","authors":"Chen Dong , Yi Wang , Kanghui Jia , Dan Song , Xiaolan Song , Chongwei An","doi":"10.1016/j.partic.2024.06.009","DOIUrl":null,"url":null,"abstract":"<div><p>Boron nanoparticles, with their remarkably high gravimetric and volumetric calorific values, emerge as the most promising fuel in energetic fields. However, challenges such as susceptibility to oxidation, high ignition temperature, and low combustion efficiency have constrained their further applications. In this study, we fabricated high explosives based nano-boron microspheres with uniform size using the electrostatic spray method, in which the boron nanoparticles and high explosives (CL-20 or PETN) are closely bonded together by fluorinated polymer (F<sub>2602</sub>) and evenly distributed. The results indicated that the microspheres exhibited high sphericity and showed an enhanced antioxidant capability. The addition of high-energy explosives not only reduced the thermal oxidation temperature of nano-boron powder within the microspheres but also significantly enhanced the pressurization rate. Additionally, the microspheres with added high-energy explosives released more energy during the combustion process. Compared to physically mixed samples, electrostatically sprayed microspheres with a uniform microstructure still exhibited higher reactivity. Therefore, the design and synthesis of microspheres with controllable structures using the electrostatic spray method show promising application prospects.</p></div>","PeriodicalId":401,"journal":{"name":"Particuology","volume":"93 ","pages":"Pages 125-136"},"PeriodicalIF":4.1000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation and characterization of high-reactivity explosive-based nano-boron microspheres\",\"authors\":\"Chen Dong , Yi Wang , Kanghui Jia , Dan Song , Xiaolan Song , Chongwei An\",\"doi\":\"10.1016/j.partic.2024.06.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Boron nanoparticles, with their remarkably high gravimetric and volumetric calorific values, emerge as the most promising fuel in energetic fields. However, challenges such as susceptibility to oxidation, high ignition temperature, and low combustion efficiency have constrained their further applications. In this study, we fabricated high explosives based nano-boron microspheres with uniform size using the electrostatic spray method, in which the boron nanoparticles and high explosives (CL-20 or PETN) are closely bonded together by fluorinated polymer (F<sub>2602</sub>) and evenly distributed. The results indicated that the microspheres exhibited high sphericity and showed an enhanced antioxidant capability. The addition of high-energy explosives not only reduced the thermal oxidation temperature of nano-boron powder within the microspheres but also significantly enhanced the pressurization rate. Additionally, the microspheres with added high-energy explosives released more energy during the combustion process. Compared to physically mixed samples, electrostatically sprayed microspheres with a uniform microstructure still exhibited higher reactivity. Therefore, the design and synthesis of microspheres with controllable structures using the electrostatic spray method show promising application prospects.</p></div>\",\"PeriodicalId\":401,\"journal\":{\"name\":\"Particuology\",\"volume\":\"93 \",\"pages\":\"Pages 125-136\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Particuology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1674200124001196\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particuology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674200124001196","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Preparation and characterization of high-reactivity explosive-based nano-boron microspheres
Boron nanoparticles, with their remarkably high gravimetric and volumetric calorific values, emerge as the most promising fuel in energetic fields. However, challenges such as susceptibility to oxidation, high ignition temperature, and low combustion efficiency have constrained their further applications. In this study, we fabricated high explosives based nano-boron microspheres with uniform size using the electrostatic spray method, in which the boron nanoparticles and high explosives (CL-20 or PETN) are closely bonded together by fluorinated polymer (F2602) and evenly distributed. The results indicated that the microspheres exhibited high sphericity and showed an enhanced antioxidant capability. The addition of high-energy explosives not only reduced the thermal oxidation temperature of nano-boron powder within the microspheres but also significantly enhanced the pressurization rate. Additionally, the microspheres with added high-energy explosives released more energy during the combustion process. Compared to physically mixed samples, electrostatically sprayed microspheres with a uniform microstructure still exhibited higher reactivity. Therefore, the design and synthesis of microspheres with controllable structures using the electrostatic spray method show promising application prospects.
期刊介绍:
The word ‘particuology’ was coined to parallel the discipline for the science and technology of particles.
Particuology is an interdisciplinary journal that publishes frontier research articles and critical reviews on the discovery, formulation and engineering of particulate materials, processes and systems. It especially welcomes contributions utilising advanced theoretical, modelling and measurement methods to enable the discovery and creation of new particulate materials, and the manufacturing of functional particulate-based products, such as sensors.
Papers are handled by Thematic Editors who oversee contributions from specific subject fields. These fields are classified into: Particle Synthesis and Modification; Particle Characterization and Measurement; Granular Systems and Bulk Solids Technology; Fluidization and Particle-Fluid Systems; Aerosols; and Applications of Particle Technology.
Key topics concerning the creation and processing of particulates include:
-Modelling and simulation of particle formation, collective behaviour of particles and systems for particle production over a broad spectrum of length scales
-Mining of experimental data for particle synthesis and surface properties to facilitate the creation of new materials and processes
-Particle design and preparation including controlled response and sensing functionalities in formation, delivery systems and biological systems, etc.
-Experimental and computational methods for visualization and analysis of particulate system.
These topics are broadly relevant to the production of materials, pharmaceuticals and food, and to the conversion of energy resources to fuels and protection of the environment.