{"title":"r + 1 个顶点上 r 个图的图兰数","authors":"Alexander Sidorenko","doi":"10.1016/j.jctb.2024.06.004","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><msubsup><mrow><mi>H</mi></mrow><mrow><mi>k</mi></mrow><mrow><mi>r</mi></mrow></msubsup></math></span> denote an <em>r</em>-uniform hypergraph with <em>k</em> edges and <span><math><mi>r</mi><mo>+</mo><mn>1</mn></math></span> vertices, where <span><math><mi>k</mi><mo>≤</mo><mi>r</mi><mo>+</mo><mn>1</mn></math></span> (it is easy to see that such a hypergraph is unique up to isomorphism). The known general bounds on its Turán density are <span><math><mi>π</mi><mo>(</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mi>k</mi></mrow><mrow><mi>r</mi></mrow></msubsup><mo>)</mo><mo>≤</mo><mfrac><mrow><mi>k</mi><mo>−</mo><mn>2</mn></mrow><mrow><mi>r</mi></mrow></mfrac></math></span> for all <span><math><mi>k</mi><mo>≥</mo><mn>3</mn></math></span>, and <span><math><mi>π</mi><mo>(</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mn>3</mn></mrow><mrow><mi>r</mi></mrow></msubsup><mo>)</mo><mo>≥</mo><msup><mrow><mn>2</mn></mrow><mrow><mn>1</mn><mo>−</mo><mi>r</mi></mrow></msup></math></span> for <span><math><mi>k</mi><mo>=</mo><mn>3</mn></math></span>. We prove that <span><math><mi>π</mi><mo>(</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mi>k</mi></mrow><mrow><mi>r</mi></mrow></msubsup><mo>)</mo><mo>≥</mo><mo>(</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>−</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo><mspace></mspace><msup><mrow><mi>r</mi></mrow><mrow><mo>−</mo><mo>(</mo><mn>1</mn><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>k</mi><mo>−</mo><mn>2</mn></mrow></mfrac><mo>)</mo></mrow></msup></math></span> as <span><math><mi>r</mi><mo>→</mo><mo>∞</mo></math></span>. In the case <span><math><mi>k</mi><mo>=</mo><mn>3</mn></math></span>, we prove <span><math><mi>π</mi><mo>(</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mn>3</mn></mrow><mrow><mi>r</mi></mrow></msubsup><mo>)</mo><mo>≥</mo><mo>(</mo><mn>1.7215</mn><mo>−</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo><mspace></mspace><msup><mrow><mi>r</mi></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></math></span> as <span><math><mi>r</mi><mo>→</mo><mo>∞</mo></math></span>, and <span><math><mi>π</mi><mo>(</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mn>3</mn></mrow><mrow><mi>r</mi></mrow></msubsup><mo>)</mo><mo>≥</mo><msup><mrow><mi>r</mi></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></math></span> for all <em>r</em>.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"169 ","pages":"Pages 150-160"},"PeriodicalIF":1.2000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Turán numbers of r-graphs on r + 1 vertices\",\"authors\":\"Alexander Sidorenko\",\"doi\":\"10.1016/j.jctb.2024.06.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span><math><msubsup><mrow><mi>H</mi></mrow><mrow><mi>k</mi></mrow><mrow><mi>r</mi></mrow></msubsup></math></span> denote an <em>r</em>-uniform hypergraph with <em>k</em> edges and <span><math><mi>r</mi><mo>+</mo><mn>1</mn></math></span> vertices, where <span><math><mi>k</mi><mo>≤</mo><mi>r</mi><mo>+</mo><mn>1</mn></math></span> (it is easy to see that such a hypergraph is unique up to isomorphism). The known general bounds on its Turán density are <span><math><mi>π</mi><mo>(</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mi>k</mi></mrow><mrow><mi>r</mi></mrow></msubsup><mo>)</mo><mo>≤</mo><mfrac><mrow><mi>k</mi><mo>−</mo><mn>2</mn></mrow><mrow><mi>r</mi></mrow></mfrac></math></span> for all <span><math><mi>k</mi><mo>≥</mo><mn>3</mn></math></span>, and <span><math><mi>π</mi><mo>(</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mn>3</mn></mrow><mrow><mi>r</mi></mrow></msubsup><mo>)</mo><mo>≥</mo><msup><mrow><mn>2</mn></mrow><mrow><mn>1</mn><mo>−</mo><mi>r</mi></mrow></msup></math></span> for <span><math><mi>k</mi><mo>=</mo><mn>3</mn></math></span>. We prove that <span><math><mi>π</mi><mo>(</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mi>k</mi></mrow><mrow><mi>r</mi></mrow></msubsup><mo>)</mo><mo>≥</mo><mo>(</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>−</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo><mspace></mspace><msup><mrow><mi>r</mi></mrow><mrow><mo>−</mo><mo>(</mo><mn>1</mn><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>k</mi><mo>−</mo><mn>2</mn></mrow></mfrac><mo>)</mo></mrow></msup></math></span> as <span><math><mi>r</mi><mo>→</mo><mo>∞</mo></math></span>. In the case <span><math><mi>k</mi><mo>=</mo><mn>3</mn></math></span>, we prove <span><math><mi>π</mi><mo>(</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mn>3</mn></mrow><mrow><mi>r</mi></mrow></msubsup><mo>)</mo><mo>≥</mo><mo>(</mo><mn>1.7215</mn><mo>−</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo><mspace></mspace><msup><mrow><mi>r</mi></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></math></span> as <span><math><mi>r</mi><mo>→</mo><mo>∞</mo></math></span>, and <span><math><mi>π</mi><mo>(</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mn>3</mn></mrow><mrow><mi>r</mi></mrow></msubsup><mo>)</mo><mo>≥</mo><msup><mrow><mi>r</mi></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></math></span> for all <em>r</em>.</p></div>\",\"PeriodicalId\":54865,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series B\",\"volume\":\"169 \",\"pages\":\"Pages 150-160\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series B\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0095895624000558\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895624000558","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Let denote an r-uniform hypergraph with k edges and vertices, where (it is easy to see that such a hypergraph is unique up to isomorphism). The known general bounds on its Turán density are for all , and for . We prove that as . In the case , we prove as , and for all r.
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.