Minhhuy Le , Phuong Huy Pham , Le Quang Trung , Sy Phuong Hoang , Duc Minh Le , Quang Vuong Pham , Van Su Luong
{"title":"通过基于自动编码器的无监督学习提高脉冲涡流测试系统的腐蚀检测能力","authors":"Minhhuy Le , Phuong Huy Pham , Le Quang Trung , Sy Phuong Hoang , Duc Minh Le , Quang Vuong Pham , Van Su Luong","doi":"10.1016/j.ndteint.2024.103175","DOIUrl":null,"url":null,"abstract":"<div><p>Pulsed Eddy Current Testing (PECT) stands out as an advanced method in Non-Destructive Testing due to its extensive spectrum characteristics in comparison to traditional ECT techniques, making it exceptionally suitable for identifying corrosion. Nonetheless, the analysis of PECT signals for corrosion detection poses a challenge due to the transient nature of these signals and the impact of sensor lift-off effects. As a result, conventional methods are facing hurdles in dealing with corrosion signals of poor quality. In this study, the challenge is addressed by employing unsupervised learning methods utilizing an autoencoder neural network. This autoencoder integrates Long Short-Term Memory and 1D convolutional layers, acquiring the underlying features of normal PECT signals from non-corrosive regions. Significantly, the model is trained exclusively on this normal data, thereby obviating the necessity for pre-existing corrosion information. Through learning the inherent structure of normal signals, the model can detect anomalies in unseen data, potentially indicating corrosion. The unsupervised framework presents several advantages, such as reducing reliance on prior corrosion knowledge, mitigating inherent noise, and addressing sensor lift-off effects. Experimental results were conducted to compare with traditional methods like the lift-off of intersection and lift-off compensation methods. This approach resulted in a significant improvement in SNR, ranging from 100 % to 200 %, thus facilitating more robust NDT applications employing smart PECT sensors empowered by unsupervised learning techniques.</p></div>","PeriodicalId":18868,"journal":{"name":"Ndt & E International","volume":"146 ","pages":"Article 103175"},"PeriodicalIF":4.1000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing corrosion detection in pulsed eddy current testing systems through autoencoder-based unsupervised learning\",\"authors\":\"Minhhuy Le , Phuong Huy Pham , Le Quang Trung , Sy Phuong Hoang , Duc Minh Le , Quang Vuong Pham , Van Su Luong\",\"doi\":\"10.1016/j.ndteint.2024.103175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Pulsed Eddy Current Testing (PECT) stands out as an advanced method in Non-Destructive Testing due to its extensive spectrum characteristics in comparison to traditional ECT techniques, making it exceptionally suitable for identifying corrosion. Nonetheless, the analysis of PECT signals for corrosion detection poses a challenge due to the transient nature of these signals and the impact of sensor lift-off effects. As a result, conventional methods are facing hurdles in dealing with corrosion signals of poor quality. In this study, the challenge is addressed by employing unsupervised learning methods utilizing an autoencoder neural network. This autoencoder integrates Long Short-Term Memory and 1D convolutional layers, acquiring the underlying features of normal PECT signals from non-corrosive regions. Significantly, the model is trained exclusively on this normal data, thereby obviating the necessity for pre-existing corrosion information. Through learning the inherent structure of normal signals, the model can detect anomalies in unseen data, potentially indicating corrosion. The unsupervised framework presents several advantages, such as reducing reliance on prior corrosion knowledge, mitigating inherent noise, and addressing sensor lift-off effects. Experimental results were conducted to compare with traditional methods like the lift-off of intersection and lift-off compensation methods. This approach resulted in a significant improvement in SNR, ranging from 100 % to 200 %, thus facilitating more robust NDT applications employing smart PECT sensors empowered by unsupervised learning techniques.</p></div>\",\"PeriodicalId\":18868,\"journal\":{\"name\":\"Ndt & E International\",\"volume\":\"146 \",\"pages\":\"Article 103175\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ndt & E International\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0963869524001403\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ndt & E International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0963869524001403","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Enhancing corrosion detection in pulsed eddy current testing systems through autoencoder-based unsupervised learning
Pulsed Eddy Current Testing (PECT) stands out as an advanced method in Non-Destructive Testing due to its extensive spectrum characteristics in comparison to traditional ECT techniques, making it exceptionally suitable for identifying corrosion. Nonetheless, the analysis of PECT signals for corrosion detection poses a challenge due to the transient nature of these signals and the impact of sensor lift-off effects. As a result, conventional methods are facing hurdles in dealing with corrosion signals of poor quality. In this study, the challenge is addressed by employing unsupervised learning methods utilizing an autoencoder neural network. This autoencoder integrates Long Short-Term Memory and 1D convolutional layers, acquiring the underlying features of normal PECT signals from non-corrosive regions. Significantly, the model is trained exclusively on this normal data, thereby obviating the necessity for pre-existing corrosion information. Through learning the inherent structure of normal signals, the model can detect anomalies in unseen data, potentially indicating corrosion. The unsupervised framework presents several advantages, such as reducing reliance on prior corrosion knowledge, mitigating inherent noise, and addressing sensor lift-off effects. Experimental results were conducted to compare with traditional methods like the lift-off of intersection and lift-off compensation methods. This approach resulted in a significant improvement in SNR, ranging from 100 % to 200 %, thus facilitating more robust NDT applications employing smart PECT sensors empowered by unsupervised learning techniques.
期刊介绍:
NDT&E international publishes peer-reviewed results of original research and development in all categories of the fields of nondestructive testing and evaluation including ultrasonics, electromagnetics, radiography, optical and thermal methods. In addition to traditional NDE topics, the emerging technology area of inspection of civil structures and materials is also emphasized. The journal publishes original papers on research and development of new inspection techniques and methods, as well as on novel and innovative applications of established methods. Papers on NDE sensors and their applications both for inspection and process control, as well as papers describing novel NDE systems for structural health monitoring and their performance in industrial settings are also considered. Other regular features include international news, new equipment and a calendar of forthcoming worldwide meetings. This journal is listed in Current Contents.