通过阴离子协同策略构建具有更大层间距的 WSSe2/C 阳极,实现高效 Na+ 存储

IF 8.1 2区 工程技术 Q1 CHEMISTRY, PHYSICAL
Jian Wang , Jiaxin Liu , Ramesh T. Subramaniam , Di Zhang , Zhaojin Li , Haw Jiunn Woo , Bo Wang
{"title":"通过阴离子协同策略构建具有更大层间距的 WSSe2/C 阳极,实现高效 Na+ 存储","authors":"Jian Wang ,&nbsp;Jiaxin Liu ,&nbsp;Ramesh T. Subramaniam ,&nbsp;Di Zhang ,&nbsp;Zhaojin Li ,&nbsp;Haw Jiunn Woo ,&nbsp;Bo Wang","doi":"10.1016/j.jpowsour.2024.234991","DOIUrl":null,"url":null,"abstract":"<div><p>High-capacity transition metal chalcogenides exhibit intrinsically low conductivity and ion transport efficiency when applied to sodium-ion energy storage devices. Here, carbon-encapsulated WS<sub>x</sub> precursors are synthesized using high chloride hydrolysis properties combined with a hydrothermal process. Afterwards, WSSe<sub>2</sub>/C anode with dual anion effect is prepared by replacing some S atoms in WS<sub>x</sub> with Se atoms employing a microwave sintering process. The obtained WSSe<sub>2</sub>/C electrode exhibits a significantly enlarged crystal spacing by constructing built-in electric fields, which ensures rapid and stable Na<sup>+</sup> transport. The carbon-encapsulated strategy aims to improve electrical conductivity while providing a buffer medium for volume expansion during electrochemical phase transitions. Additionally, by exploring the effects of different carbon introductions on the electrochemical properties, it is determined that 1 g ribose encapsulated WSSe<sub>2</sub> (WSSe<sub>2</sub>/C-1) provides the best intervening effect. Consequently, in the assembled Na half-cell, the WSSe<sub>2</sub>/C-1 anode displays a high specific capacity of 715.3 mA h g<sup>−1</sup> after 200 cycles of activation at 1 A g<sup>−1</sup>. Further, the assembled sodium-ion capacitor exhibits a high-capacity retention of 86.5 % after 13,000 cycles at a high-power density of 3800 W kg<sup>−1</sup>. This strategy of combining carbon encapsulation and dual anion effect provides a reference for developing high-power density anodes.</p></div>","PeriodicalId":377,"journal":{"name":"Journal of Power Sources","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of WSSe2/C anode with enlarged layer spacing for efficient Na+ storage by anion synergistic strategy\",\"authors\":\"Jian Wang ,&nbsp;Jiaxin Liu ,&nbsp;Ramesh T. Subramaniam ,&nbsp;Di Zhang ,&nbsp;Zhaojin Li ,&nbsp;Haw Jiunn Woo ,&nbsp;Bo Wang\",\"doi\":\"10.1016/j.jpowsour.2024.234991\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>High-capacity transition metal chalcogenides exhibit intrinsically low conductivity and ion transport efficiency when applied to sodium-ion energy storage devices. Here, carbon-encapsulated WS<sub>x</sub> precursors are synthesized using high chloride hydrolysis properties combined with a hydrothermal process. Afterwards, WSSe<sub>2</sub>/C anode with dual anion effect is prepared by replacing some S atoms in WS<sub>x</sub> with Se atoms employing a microwave sintering process. The obtained WSSe<sub>2</sub>/C electrode exhibits a significantly enlarged crystal spacing by constructing built-in electric fields, which ensures rapid and stable Na<sup>+</sup> transport. The carbon-encapsulated strategy aims to improve electrical conductivity while providing a buffer medium for volume expansion during electrochemical phase transitions. Additionally, by exploring the effects of different carbon introductions on the electrochemical properties, it is determined that 1 g ribose encapsulated WSSe<sub>2</sub> (WSSe<sub>2</sub>/C-1) provides the best intervening effect. Consequently, in the assembled Na half-cell, the WSSe<sub>2</sub>/C-1 anode displays a high specific capacity of 715.3 mA h g<sup>−1</sup> after 200 cycles of activation at 1 A g<sup>−1</sup>. Further, the assembled sodium-ion capacitor exhibits a high-capacity retention of 86.5 % after 13,000 cycles at a high-power density of 3800 W kg<sup>−1</sup>. This strategy of combining carbon encapsulation and dual anion effect provides a reference for developing high-power density anodes.</p></div>\",\"PeriodicalId\":377,\"journal\":{\"name\":\"Journal of Power Sources\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Power Sources\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378775324009431\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378775324009431","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

高容量过渡金属卤化物在应用于钠离子储能设备时,表现出固有的低电导率和离子传输效率。在这里,我们利用高氯化物水解特性结合水热工艺合成了碳包封的 WSx 前驱体。然后,利用微波烧结工艺将 WSx 中的部分 S 原子替换为 Se 原子,制备出具有双阴离子效应的 WSSe2/C 阳极。所获得的 WSSe2/C 电极通过构建内置电场显著扩大了晶体间距,从而确保了 Na+ 的快速稳定传输。碳封装策略旨在提高导电性,同时为电化学相变过程中的体积膨胀提供缓冲介质。此外,通过探索不同碳引入对电化学特性的影响,确定 1 克核糖封装的 WSSe2(WSSe2/C-1)具有最佳的干预效果。因此,在组装好的 Na 半电池中,WSSe2/C-1 阳极在 1 A g-1 的条件下活化 200 个周期后,显示出 715.3 mA h g-1 的高比容量。此外,组装好的钠离子电容器在 3800 W kg-1 的高功率密度下,经过 13,000 次循环后,显示出 86.5 % 的高容量保持率。这种将碳封装和双阴离子效应相结合的策略为开发高功率密度阳极提供了参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Construction of WSSe2/C anode with enlarged layer spacing for efficient Na+ storage by anion synergistic strategy

Construction of WSSe2/C anode with enlarged layer spacing for efficient Na+ storage by anion synergistic strategy

High-capacity transition metal chalcogenides exhibit intrinsically low conductivity and ion transport efficiency when applied to sodium-ion energy storage devices. Here, carbon-encapsulated WSx precursors are synthesized using high chloride hydrolysis properties combined with a hydrothermal process. Afterwards, WSSe2/C anode with dual anion effect is prepared by replacing some S atoms in WSx with Se atoms employing a microwave sintering process. The obtained WSSe2/C electrode exhibits a significantly enlarged crystal spacing by constructing built-in electric fields, which ensures rapid and stable Na+ transport. The carbon-encapsulated strategy aims to improve electrical conductivity while providing a buffer medium for volume expansion during electrochemical phase transitions. Additionally, by exploring the effects of different carbon introductions on the electrochemical properties, it is determined that 1 g ribose encapsulated WSSe2 (WSSe2/C-1) provides the best intervening effect. Consequently, in the assembled Na half-cell, the WSSe2/C-1 anode displays a high specific capacity of 715.3 mA h g−1 after 200 cycles of activation at 1 A g−1. Further, the assembled sodium-ion capacitor exhibits a high-capacity retention of 86.5 % after 13,000 cycles at a high-power density of 3800 W kg−1. This strategy of combining carbon encapsulation and dual anion effect provides a reference for developing high-power density anodes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Power Sources
Journal of Power Sources 工程技术-电化学
CiteScore
16.40
自引率
6.50%
发文量
1249
审稿时长
36 days
期刊介绍: The Journal of Power Sources is a publication catering to researchers and technologists interested in various aspects of the science, technology, and applications of electrochemical power sources. It covers original research and reviews on primary and secondary batteries, fuel cells, supercapacitors, and photo-electrochemical cells. Topics considered include the research, development and applications of nanomaterials and novel componentry for these devices. Examples of applications of these electrochemical power sources include: • Portable electronics • Electric and Hybrid Electric Vehicles • Uninterruptible Power Supply (UPS) systems • Storage of renewable energy • Satellites and deep space probes • Boats and ships, drones and aircrafts • Wearable energy storage systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信