基于 P(MMA-co-Sty)和 PVDF 混合物的高性能凝胶聚合物电解质,用于延长循环寿命的快速充电锂金属电池

IF 8.1 2区 工程技术 Q1 CHEMISTRY, PHYSICAL
Wangbing Yao , Zhuoyuan Zheng , Xudong Zhang , Jie Zhou , Jinbao Song , Dongming Liu , Yusong Zhu
{"title":"基于 P(MMA-co-Sty)和 PVDF 混合物的高性能凝胶聚合物电解质,用于延长循环寿命的快速充电锂金属电池","authors":"Wangbing Yao ,&nbsp;Zhuoyuan Zheng ,&nbsp;Xudong Zhang ,&nbsp;Jie Zhou ,&nbsp;Jinbao Song ,&nbsp;Dongming Liu ,&nbsp;Yusong Zhu","doi":"10.1016/j.jpowsour.2024.234999","DOIUrl":null,"url":null,"abstract":"<div><p>In the quest for high-energy-density lithium metal batteries (LMBs), the stabilization of lithium (Li) metal anodes during fast charging remains a formidable challenge. In this study, a novel copolymer, Poly(methyl methacrylate-<em>co</em>-styrene) (namely PMS) is synthesized and blended with Poly(vinylidene fluoride) to fabricate a porous gel polymer electrolyte (GPE, namely PMS-PVDF) through the nonsolvent-induced phase separation technique, which significantly enhances the electrochemical stability and fast-charging capabilities of LMBs. The developed GPE exhibits a high ionic conductivity of 5.62 mS cm<sup>−1</sup>, thereby reducing the formation of detrimental Li dendrites and leading to over 400 h stripping/plating process at 0.5 mA cm<sup>−2</sup>. Extensive electrochemical tests show that the LMBs with the obtained PMS-PVDF GPE achieve exceptional cycle stability over 600 and 1000 cycles at the C-rates of 0.5 and 3 C, respectively, outperforming traditional electrolytes. Furthermore, the ultra-stability of the quasi-solid-state electrolyte is demonstrated in a 375 mAh pouch cell setup, suggesting an essential trait for the practical application of high-power devices. This work marks a pivotal contribution to the field of energy storage, delivering insights and a clear methodology that pave the way for the development of next-generation LMBs poised for commercial viability.</p></div>","PeriodicalId":377,"journal":{"name":"Journal of Power Sources","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High performance gel polymer electrolyte based on P(MMA-co-Sty) and PVDF blend for fast-charging lithium metal batteries with extended cycle life\",\"authors\":\"Wangbing Yao ,&nbsp;Zhuoyuan Zheng ,&nbsp;Xudong Zhang ,&nbsp;Jie Zhou ,&nbsp;Jinbao Song ,&nbsp;Dongming Liu ,&nbsp;Yusong Zhu\",\"doi\":\"10.1016/j.jpowsour.2024.234999\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the quest for high-energy-density lithium metal batteries (LMBs), the stabilization of lithium (Li) metal anodes during fast charging remains a formidable challenge. In this study, a novel copolymer, Poly(methyl methacrylate-<em>co</em>-styrene) (namely PMS) is synthesized and blended with Poly(vinylidene fluoride) to fabricate a porous gel polymer electrolyte (GPE, namely PMS-PVDF) through the nonsolvent-induced phase separation technique, which significantly enhances the electrochemical stability and fast-charging capabilities of LMBs. The developed GPE exhibits a high ionic conductivity of 5.62 mS cm<sup>−1</sup>, thereby reducing the formation of detrimental Li dendrites and leading to over 400 h stripping/plating process at 0.5 mA cm<sup>−2</sup>. Extensive electrochemical tests show that the LMBs with the obtained PMS-PVDF GPE achieve exceptional cycle stability over 600 and 1000 cycles at the C-rates of 0.5 and 3 C, respectively, outperforming traditional electrolytes. Furthermore, the ultra-stability of the quasi-solid-state electrolyte is demonstrated in a 375 mAh pouch cell setup, suggesting an essential trait for the practical application of high-power devices. This work marks a pivotal contribution to the field of energy storage, delivering insights and a clear methodology that pave the way for the development of next-generation LMBs poised for commercial viability.</p></div>\",\"PeriodicalId\":377,\"journal\":{\"name\":\"Journal of Power Sources\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Power Sources\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378775324009510\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378775324009510","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在开发高能量密度锂金属电池(LMB)的过程中,如何在快速充电过程中稳定锂(Li)金属阳极仍然是一项艰巨的挑战。本研究合成了一种新型共聚物--聚(甲基丙烯酸甲酯-共苯乙烯)(即 PMS),并将其与聚(偏氟乙烯)混合,通过非溶剂诱导相分离技术制成了多孔凝胶聚合物电解质(GPE,即 PMS-PVDF),从而显著提高了锂金属电池的电化学稳定性和快速充电能力。所开发的 GPE 具有 5.62 mS cm-1 的高离子电导率,从而减少了有害锂枝晶的形成,并能在 0.5 mA cm-2 下进行超过 400 小时的剥离/电镀过程。广泛的电化学测试表明,使用所获得的 PMS-PVDF GPE 的 LMB 在 0.5 C 和 3 C 的 C 速率下分别实现了 600 次和 1000 次循环的超高稳定性,优于传统电解质。此外,这种准固态电解质的超稳定性在 375 mAh 袋装电池设置中得到了验证,这表明它具有大功率设备实际应用的基本特性。这项研究为储能领域做出了关键性的贡献,提供了深刻的见解和明确的方法,为开发具有商业可行性的下一代 LMB 铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

High performance gel polymer electrolyte based on P(MMA-co-Sty) and PVDF blend for fast-charging lithium metal batteries with extended cycle life

High performance gel polymer electrolyte based on P(MMA-co-Sty) and PVDF blend for fast-charging lithium metal batteries with extended cycle life

In the quest for high-energy-density lithium metal batteries (LMBs), the stabilization of lithium (Li) metal anodes during fast charging remains a formidable challenge. In this study, a novel copolymer, Poly(methyl methacrylate-co-styrene) (namely PMS) is synthesized and blended with Poly(vinylidene fluoride) to fabricate a porous gel polymer electrolyte (GPE, namely PMS-PVDF) through the nonsolvent-induced phase separation technique, which significantly enhances the electrochemical stability and fast-charging capabilities of LMBs. The developed GPE exhibits a high ionic conductivity of 5.62 mS cm−1, thereby reducing the formation of detrimental Li dendrites and leading to over 400 h stripping/plating process at 0.5 mA cm−2. Extensive electrochemical tests show that the LMBs with the obtained PMS-PVDF GPE achieve exceptional cycle stability over 600 and 1000 cycles at the C-rates of 0.5 and 3 C, respectively, outperforming traditional electrolytes. Furthermore, the ultra-stability of the quasi-solid-state electrolyte is demonstrated in a 375 mAh pouch cell setup, suggesting an essential trait for the practical application of high-power devices. This work marks a pivotal contribution to the field of energy storage, delivering insights and a clear methodology that pave the way for the development of next-generation LMBs poised for commercial viability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Power Sources
Journal of Power Sources 工程技术-电化学
CiteScore
16.40
自引率
6.50%
发文量
1249
审稿时长
36 days
期刊介绍: The Journal of Power Sources is a publication catering to researchers and technologists interested in various aspects of the science, technology, and applications of electrochemical power sources. It covers original research and reviews on primary and secondary batteries, fuel cells, supercapacitors, and photo-electrochemical cells. Topics considered include the research, development and applications of nanomaterials and novel componentry for these devices. Examples of applications of these electrochemical power sources include: • Portable electronics • Electric and Hybrid Electric Vehicles • Uninterruptible Power Supply (UPS) systems • Storage of renewable energy • Satellites and deep space probes • Boats and ships, drones and aircrafts • Wearable energy storage systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信