利用全聚焦法对表面波进行表面成像,用于非破坏性测试

IF 4.1 2区 材料科学 Q1 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
Mathieu Ducousso , Olivier Ghibaudo , Stéphane Amiel
{"title":"利用全聚焦法对表面波进行表面成像,用于非破坏性测试","authors":"Mathieu Ducousso ,&nbsp;Olivier Ghibaudo ,&nbsp;Stéphane Amiel","doi":"10.1016/j.ndteint.2024.103176","DOIUrl":null,"url":null,"abstract":"<div><p>We demonstrate the effectiveness of total focusing methods (TFM) using Rayleigh waves for surface and sub-surface nondestructive inspection of different metals. The relatively low velocity of Rayleigh waves leads to sub-100 μm resolution imaging, with a penetration depth approximately equal to its wavelength. This allows for imaging and sizing sub-millimetric holes, possibly on coated material, as well as cracks, segregations, and other defects. The waves can propagate over long distances and works with curved surfaces or very close to edges. This shows potential for a new type of real-time surface inspection of large surfaces, with excellent spatial resolution. The process is free of chemical preparation and cleaning, and can be fully automated, from acquisition to decision or for making surface digital twin.</p></div>","PeriodicalId":18868,"journal":{"name":"Ndt & E International","volume":"146 ","pages":"Article 103176"},"PeriodicalIF":4.1000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface imaging using total focusing method on surface waves for non destructive testing\",\"authors\":\"Mathieu Ducousso ,&nbsp;Olivier Ghibaudo ,&nbsp;Stéphane Amiel\",\"doi\":\"10.1016/j.ndteint.2024.103176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We demonstrate the effectiveness of total focusing methods (TFM) using Rayleigh waves for surface and sub-surface nondestructive inspection of different metals. The relatively low velocity of Rayleigh waves leads to sub-100 μm resolution imaging, with a penetration depth approximately equal to its wavelength. This allows for imaging and sizing sub-millimetric holes, possibly on coated material, as well as cracks, segregations, and other defects. The waves can propagate over long distances and works with curved surfaces or very close to edges. This shows potential for a new type of real-time surface inspection of large surfaces, with excellent spatial resolution. The process is free of chemical preparation and cleaning, and can be fully automated, from acquisition to decision or for making surface digital twin.</p></div>\",\"PeriodicalId\":18868,\"journal\":{\"name\":\"Ndt & E International\",\"volume\":\"146 \",\"pages\":\"Article 103176\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ndt & E International\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0963869524001415\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ndt & E International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0963869524001415","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

摘要

我们展示了利用瑞利波的全聚焦方法(TFM)对不同金属的表面和次表面进行无损检测的有效性。瑞利波的速度相对较低,可实现 100 微米以下分辨率的成像,穿透深度约等于其波长。这样就可以对亚毫米孔(可能是涂层材料上的孔)以及裂纹、偏析和其他缺陷进行成像和定标。这种波可以长距离传播,并能在弯曲表面或非常靠近边缘的地方工作。这显示了对大型表面进行新型实时表面检测的潜力,并具有出色的空间分辨率。该过程无需化学制备和清洁,从采集到决策或制作表面数字孪晶均可实现全自动化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Surface imaging using total focusing method on surface waves for non destructive testing

We demonstrate the effectiveness of total focusing methods (TFM) using Rayleigh waves for surface and sub-surface nondestructive inspection of different metals. The relatively low velocity of Rayleigh waves leads to sub-100 μm resolution imaging, with a penetration depth approximately equal to its wavelength. This allows for imaging and sizing sub-millimetric holes, possibly on coated material, as well as cracks, segregations, and other defects. The waves can propagate over long distances and works with curved surfaces or very close to edges. This shows potential for a new type of real-time surface inspection of large surfaces, with excellent spatial resolution. The process is free of chemical preparation and cleaning, and can be fully automated, from acquisition to decision or for making surface digital twin.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ndt & E International
Ndt & E International 工程技术-材料科学:表征与测试
CiteScore
7.20
自引率
9.50%
发文量
121
审稿时长
55 days
期刊介绍: NDT&E international publishes peer-reviewed results of original research and development in all categories of the fields of nondestructive testing and evaluation including ultrasonics, electromagnetics, radiography, optical and thermal methods. In addition to traditional NDE topics, the emerging technology area of inspection of civil structures and materials is also emphasized. The journal publishes original papers on research and development of new inspection techniques and methods, as well as on novel and innovative applications of established methods. Papers on NDE sensors and their applications both for inspection and process control, as well as papers describing novel NDE systems for structural health monitoring and their performance in industrial settings are also considered. Other regular features include international news, new equipment and a calendar of forthcoming worldwide meetings. This journal is listed in Current Contents.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信