Wenfei Cai , Reeti Kumar , Zhi Zhu , Sunita Varjani , Zhong-Ting Hu , Jonathan Woon-Chung Wong , Jun Zhao
{"title":"使用镍/铝-MOF 衍生催化剂催化热解聚丙烯废料以生产液体燃料","authors":"Wenfei Cai , Reeti Kumar , Zhi Zhu , Sunita Varjani , Zhong-Ting Hu , Jonathan Woon-Chung Wong , Jun Zhao","doi":"10.1016/j.nxsust.2024.100059","DOIUrl":null,"url":null,"abstract":"<div><p>Waste plastics pose significant environmental risks due to their non-biodegradable nature and accumulation in the environment. The pandemic has exacerbated this issue by increasing the production of plastic medical waste such as surgical masks. This study developed Ni/Al-MOF-derived catalysts for pyrolysis, an effective plastic waste utilization technology. By optimizing conditions, the study successfully converted waste surgical masks, made primarily of polypropylene, into gasoline or diesel range chemicals. The oil yield from polypropylene waste reached 72.8 % using Ni/Al-MOF-derived catalysts with 5 % Ni loading at 450°C, while surgical masks yielded 58.9 % oil under the same conditions. Catalyst characterization revealed a high surface area and evenly distributed Ni particles in MOF-derived Al<sub>2</sub>O<sub>3</sub>, maximizing catalytic performance. This catalyst provides a promising solution for converting waste surgical masks into liquid fuels, reducing the environmental impact of plastic products, and promoting plastic waste recycling.</p></div>","PeriodicalId":100960,"journal":{"name":"Next Sustainability","volume":"4 ","pages":"Article 100059"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949823624000369/pdfft?md5=933fdb3940cd094d9a2bef35c81f9c98&pid=1-s2.0-S2949823624000369-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Catalytic pyrolysis of polypropylene waste for liquid fuels production using Ni/Al-MOF-derived catalysts\",\"authors\":\"Wenfei Cai , Reeti Kumar , Zhi Zhu , Sunita Varjani , Zhong-Ting Hu , Jonathan Woon-Chung Wong , Jun Zhao\",\"doi\":\"10.1016/j.nxsust.2024.100059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Waste plastics pose significant environmental risks due to their non-biodegradable nature and accumulation in the environment. The pandemic has exacerbated this issue by increasing the production of plastic medical waste such as surgical masks. This study developed Ni/Al-MOF-derived catalysts for pyrolysis, an effective plastic waste utilization technology. By optimizing conditions, the study successfully converted waste surgical masks, made primarily of polypropylene, into gasoline or diesel range chemicals. The oil yield from polypropylene waste reached 72.8 % using Ni/Al-MOF-derived catalysts with 5 % Ni loading at 450°C, while surgical masks yielded 58.9 % oil under the same conditions. Catalyst characterization revealed a high surface area and evenly distributed Ni particles in MOF-derived Al<sub>2</sub>O<sub>3</sub>, maximizing catalytic performance. This catalyst provides a promising solution for converting waste surgical masks into liquid fuels, reducing the environmental impact of plastic products, and promoting plastic waste recycling.</p></div>\",\"PeriodicalId\":100960,\"journal\":{\"name\":\"Next Sustainability\",\"volume\":\"4 \",\"pages\":\"Article 100059\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2949823624000369/pdfft?md5=933fdb3940cd094d9a2bef35c81f9c98&pid=1-s2.0-S2949823624000369-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Next Sustainability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949823624000369\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949823624000369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Catalytic pyrolysis of polypropylene waste for liquid fuels production using Ni/Al-MOF-derived catalysts
Waste plastics pose significant environmental risks due to their non-biodegradable nature and accumulation in the environment. The pandemic has exacerbated this issue by increasing the production of plastic medical waste such as surgical masks. This study developed Ni/Al-MOF-derived catalysts for pyrolysis, an effective plastic waste utilization technology. By optimizing conditions, the study successfully converted waste surgical masks, made primarily of polypropylene, into gasoline or diesel range chemicals. The oil yield from polypropylene waste reached 72.8 % using Ni/Al-MOF-derived catalysts with 5 % Ni loading at 450°C, while surgical masks yielded 58.9 % oil under the same conditions. Catalyst characterization revealed a high surface area and evenly distributed Ni particles in MOF-derived Al2O3, maximizing catalytic performance. This catalyst provides a promising solution for converting waste surgical masks into liquid fuels, reducing the environmental impact of plastic products, and promoting plastic waste recycling.