碱提取牙本质基质中的蛋白质作为生物活性分子混合物,用于软骨修复和再生

IF 3.4 3区 环境科学与生态学 Q3 CELL & TISSUE ENGINEERING
Sainan Wang , Sicong Mao , Guibin Huang , Peipei Jia , Yanmei Dong , Jinxuan Zheng
{"title":"碱提取牙本质基质中的蛋白质作为生物活性分子混合物,用于软骨修复和再生","authors":"Sainan Wang ,&nbsp;Sicong Mao ,&nbsp;Guibin Huang ,&nbsp;Peipei Jia ,&nbsp;Yanmei Dong ,&nbsp;Jinxuan Zheng","doi":"10.1016/j.reth.2024.06.015","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><p>Dentin matrix extracted protein (DMEP) is a mixture of proteins extracted from the organic matrix of a natural demineralized dentin matrix that is rich in a variety of growth factors. However, the effect of DMEP on cartilage regeneration is unclear. The aim of this study was to investigate the efficacy of DMEP extracted via a novel alkali conditioning method in promoting cartilage regeneration.</p></div><div><h3>Methods</h3><p>Alkali-extracted DMEP (a-DMEP) was obtained from human dentin fragments using pH 10 bicarbonate buffer. The concentration of chondrogenesis-related growth factors in a-DMEP was measured via enzyme-linked immunosorbent assay (ELISA). Human bone marrow mesenchymal stem cells (hBMMSCs) in pellet form were induced with a-DMEP. Alcian blue and Safranin O staining were performed to detect cartilage matrix formation, and quantitative real-time polymerase chain reaction (qRT-PCR) was used to assess chondrogenic-related gene expression in the pellets. Rabbit articular osteochondral defects were implanted with collagen and a-DMEP. Cartilage regeneration was assessed with histological staining 4 weeks after surgery.</p></div><div><h3>Results</h3><p>Compared with traditional neutral-extracted DMEP, a-DMEP significantly increased the levels of transforming growth factor beta 1(TGF-β1), insulin-like growth factor-1(IGF-1) and basic fibroblast growth factor (bFGF). After coculture with hBMMSC pellets, a-DMEP significantly promoted the expression of the collagen type II alpha 1(COL2A1) and aggrecan (ACAN) genes and the formation of cartilage extracellular matrix in cell pellets. Moreover, compared with equivalent amounts of exogenous human recombinant TGF-β1, a-DMEP had a stronger chondrogenic ability. <em>In vivo,</em> a-DMEP induced osteochondral regeneration with hyaline cartilage-like structures.</p></div><div><h3>Conclusions</h3><p>Our results showed that a-DMEP, a compound of various proteins derived from natural tissues, is a promising material for cartilage repair and regeneration.</p></div>","PeriodicalId":20895,"journal":{"name":"Regenerative Therapy","volume":"26 ","pages":"Pages 407-414"},"PeriodicalIF":3.4000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352320424001226/pdfft?md5=2d5697cb4ee09d37d3a3a6bc458b63a1&pid=1-s2.0-S2352320424001226-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Alkali-extracted proteins from the tooth dentin matrix as a mixture of bioactive molecules for cartilage repair and regeneration\",\"authors\":\"Sainan Wang ,&nbsp;Sicong Mao ,&nbsp;Guibin Huang ,&nbsp;Peipei Jia ,&nbsp;Yanmei Dong ,&nbsp;Jinxuan Zheng\",\"doi\":\"10.1016/j.reth.2024.06.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Introduction</h3><p>Dentin matrix extracted protein (DMEP) is a mixture of proteins extracted from the organic matrix of a natural demineralized dentin matrix that is rich in a variety of growth factors. However, the effect of DMEP on cartilage regeneration is unclear. The aim of this study was to investigate the efficacy of DMEP extracted via a novel alkali conditioning method in promoting cartilage regeneration.</p></div><div><h3>Methods</h3><p>Alkali-extracted DMEP (a-DMEP) was obtained from human dentin fragments using pH 10 bicarbonate buffer. The concentration of chondrogenesis-related growth factors in a-DMEP was measured via enzyme-linked immunosorbent assay (ELISA). Human bone marrow mesenchymal stem cells (hBMMSCs) in pellet form were induced with a-DMEP. Alcian blue and Safranin O staining were performed to detect cartilage matrix formation, and quantitative real-time polymerase chain reaction (qRT-PCR) was used to assess chondrogenic-related gene expression in the pellets. Rabbit articular osteochondral defects were implanted with collagen and a-DMEP. Cartilage regeneration was assessed with histological staining 4 weeks after surgery.</p></div><div><h3>Results</h3><p>Compared with traditional neutral-extracted DMEP, a-DMEP significantly increased the levels of transforming growth factor beta 1(TGF-β1), insulin-like growth factor-1(IGF-1) and basic fibroblast growth factor (bFGF). After coculture with hBMMSC pellets, a-DMEP significantly promoted the expression of the collagen type II alpha 1(COL2A1) and aggrecan (ACAN) genes and the formation of cartilage extracellular matrix in cell pellets. Moreover, compared with equivalent amounts of exogenous human recombinant TGF-β1, a-DMEP had a stronger chondrogenic ability. <em>In vivo,</em> a-DMEP induced osteochondral regeneration with hyaline cartilage-like structures.</p></div><div><h3>Conclusions</h3><p>Our results showed that a-DMEP, a compound of various proteins derived from natural tissues, is a promising material for cartilage repair and regeneration.</p></div>\",\"PeriodicalId\":20895,\"journal\":{\"name\":\"Regenerative Therapy\",\"volume\":\"26 \",\"pages\":\"Pages 407-414\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2352320424001226/pdfft?md5=2d5697cb4ee09d37d3a3a6bc458b63a1&pid=1-s2.0-S2352320424001226-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Regenerative Therapy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352320424001226\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regenerative Therapy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352320424001226","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

导言牙本质基质提取蛋白(DMEP)是从天然脱矿牙本质基质的有机基质中提取的蛋白质混合物,富含多种生长因子。然而,DMEP 对软骨再生的影响尚不明确。本研究的目的是探讨通过新型碱调理法提取的 DMEP 在促进软骨再生方面的功效。方法使用 pH 值为 10 的碳酸氢盐缓冲液从人类牙本质碎片中提取碱提取 DMEP(a-DMEP)。通过酶联免疫吸附试验(ELISA)测定了 DMEP 中与软骨生成相关的生长因子的浓度。用 a-DMEP 诱导颗粒状的人骨髓间充质干细胞(hBMMSCs)。用阿尔新蓝和沙弗宁 O 染色检测软骨基质的形成,用实时定量聚合酶链反应(qRT-PCR)评估颗粒中软骨相关基因的表达。用胶原蛋白和 a-DMEP 植入家兔关节骨软骨缺损处。结果与传统的中性提取 DMEP 相比,a-DMEP 能显著提高转化生长因子 beta1(TGF-β1)、胰岛素样生长因子-1(IGF-1)和碱性成纤维细胞生长因子(bFGF)的水平。与 hBMMSC 颗粒共培养后,a-DMEP 能显著促进细胞颗粒中Ⅱ型胶原α1(COL2A1)和 aggrecan(ACAN)基因的表达以及软骨细胞外基质的形成。此外,与等量的外源性人重组 TGF-β1 相比,a-DMEP 具有更强的软骨生成能力。结论我们的研究结果表明,a-DMEP 是一种从天然组织中提取的多种蛋白质的化合物,是一种很有前景的软骨修复和再生材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Alkali-extracted proteins from the tooth dentin matrix as a mixture of bioactive molecules for cartilage repair and regeneration

Introduction

Dentin matrix extracted protein (DMEP) is a mixture of proteins extracted from the organic matrix of a natural demineralized dentin matrix that is rich in a variety of growth factors. However, the effect of DMEP on cartilage regeneration is unclear. The aim of this study was to investigate the efficacy of DMEP extracted via a novel alkali conditioning method in promoting cartilage regeneration.

Methods

Alkali-extracted DMEP (a-DMEP) was obtained from human dentin fragments using pH 10 bicarbonate buffer. The concentration of chondrogenesis-related growth factors in a-DMEP was measured via enzyme-linked immunosorbent assay (ELISA). Human bone marrow mesenchymal stem cells (hBMMSCs) in pellet form were induced with a-DMEP. Alcian blue and Safranin O staining were performed to detect cartilage matrix formation, and quantitative real-time polymerase chain reaction (qRT-PCR) was used to assess chondrogenic-related gene expression in the pellets. Rabbit articular osteochondral defects were implanted with collagen and a-DMEP. Cartilage regeneration was assessed with histological staining 4 weeks after surgery.

Results

Compared with traditional neutral-extracted DMEP, a-DMEP significantly increased the levels of transforming growth factor beta 1(TGF-β1), insulin-like growth factor-1(IGF-1) and basic fibroblast growth factor (bFGF). After coculture with hBMMSC pellets, a-DMEP significantly promoted the expression of the collagen type II alpha 1(COL2A1) and aggrecan (ACAN) genes and the formation of cartilage extracellular matrix in cell pellets. Moreover, compared with equivalent amounts of exogenous human recombinant TGF-β1, a-DMEP had a stronger chondrogenic ability. In vivo, a-DMEP induced osteochondral regeneration with hyaline cartilage-like structures.

Conclusions

Our results showed that a-DMEP, a compound of various proteins derived from natural tissues, is a promising material for cartilage repair and regeneration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Regenerative Therapy
Regenerative Therapy Engineering-Biomedical Engineering
CiteScore
6.00
自引率
2.30%
发文量
106
审稿时长
49 days
期刊介绍: Regenerative Therapy is the official peer-reviewed online journal of the Japanese Society for Regenerative Medicine. Regenerative Therapy is a multidisciplinary journal that publishes original articles and reviews of basic research, clinical translation, industrial development, and regulatory issues focusing on stem cell biology, tissue engineering, and regenerative medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信