{"title":"枚举每个韦尔锥的施排列区域","authors":"Aram Dermenjian , Eleni Tzanaki","doi":"10.1016/j.ejc.2024.104002","DOIUrl":null,"url":null,"abstract":"<div><p>Given a Shi arrangement <span><math><msub><mrow><mo>Shi</mo></mrow><mrow><mi>Φ</mi></mrow></msub></math></span>, it is well-known that the total number of regions is counted by the parking number of type <span><math><mi>Φ</mi></math></span> and the total number of regions in the dominant cone is given by the Catalan number of type <span><math><mi>Φ</mi></math></span>. In the case of the latter, in Shi (1997), Shi gave a bijection between antichains in the root poset of <span><math><mi>Φ</mi></math></span> and the regions in the dominant cone. This result was later extended by Armstrong, Reiner and Rhoades in Armstrong et al. (2015) where they gave a bijection between the number of regions contained in an arbitrary Weyl cone <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>w</mi></mrow></msub></math></span> in <span><math><msub><mrow><mo>Shi</mo></mrow><mrow><mi>Φ</mi></mrow></msub></math></span> and certain subposets of the root poset. In this article we expand on these results by giving a determinantal formula for the precise number of regions in <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>w</mi></mrow></msub></math></span> using paths in certain digraphs related to Shi diagrams.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"122 ","pages":"Article 104002"},"PeriodicalIF":1.0000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0195669824000878/pdfft?md5=ab820f1a5561b5235bb9cad9f35e2215&pid=1-s2.0-S0195669824000878-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Enumerating regions of Shi arrangements per Weyl cone\",\"authors\":\"Aram Dermenjian , Eleni Tzanaki\",\"doi\":\"10.1016/j.ejc.2024.104002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Given a Shi arrangement <span><math><msub><mrow><mo>Shi</mo></mrow><mrow><mi>Φ</mi></mrow></msub></math></span>, it is well-known that the total number of regions is counted by the parking number of type <span><math><mi>Φ</mi></math></span> and the total number of regions in the dominant cone is given by the Catalan number of type <span><math><mi>Φ</mi></math></span>. In the case of the latter, in Shi (1997), Shi gave a bijection between antichains in the root poset of <span><math><mi>Φ</mi></math></span> and the regions in the dominant cone. This result was later extended by Armstrong, Reiner and Rhoades in Armstrong et al. (2015) where they gave a bijection between the number of regions contained in an arbitrary Weyl cone <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>w</mi></mrow></msub></math></span> in <span><math><msub><mrow><mo>Shi</mo></mrow><mrow><mi>Φ</mi></mrow></msub></math></span> and certain subposets of the root poset. In this article we expand on these results by giving a determinantal formula for the precise number of regions in <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>w</mi></mrow></msub></math></span> using paths in certain digraphs related to Shi diagrams.</p></div>\",\"PeriodicalId\":50490,\"journal\":{\"name\":\"European Journal of Combinatorics\",\"volume\":\"122 \",\"pages\":\"Article 104002\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0195669824000878/pdfft?md5=ab820f1a5561b5235bb9cad9f35e2215&pid=1-s2.0-S0195669824000878-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0195669824000878\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669824000878","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
众所周知,给定一个 Shi 排列 ShiΦ,区域的总数由类型 Φ 的停车数计算,而支配锥中区域的总数由类型 Φ 的加泰罗尼亚数给出。对于后者,在 Shi (1997) 中,Shi 给出了 Φ 的根正集中的反链与支配锥中的区域之间的双射关系。后来,Armstrong、Reiner 和 Rhoades 在 Armstrong 等人(2015)一文中对这一结果进行了扩展,他们给出了 ShiΦ 中任意韦尔锥 Cw 所包含的区域数与根正集的某些子集之间的双射关系。在本文中,我们利用与 Shi 图相关的某些数图中的路径,给出了 Cw 中精确区域数的行列式,从而扩展了这些结果。
Enumerating regions of Shi arrangements per Weyl cone
Given a Shi arrangement , it is well-known that the total number of regions is counted by the parking number of type and the total number of regions in the dominant cone is given by the Catalan number of type . In the case of the latter, in Shi (1997), Shi gave a bijection between antichains in the root poset of and the regions in the dominant cone. This result was later extended by Armstrong, Reiner and Rhoades in Armstrong et al. (2015) where they gave a bijection between the number of regions contained in an arbitrary Weyl cone in and certain subposets of the root poset. In this article we expand on these results by giving a determinantal formula for the precise number of regions in using paths in certain digraphs related to Shi diagrams.
期刊介绍:
The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.