A˜类型的3-前投影代数

Pub Date : 2024-06-27 DOI:10.1016/j.jpaa.2024.107760
Darius Dramburg , Oleksandra Gasanova
{"title":"A˜类型的3-前投影代数","authors":"Darius Dramburg ,&nbsp;Oleksandra Gasanova","doi":"10.1016/j.jpaa.2024.107760","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mi>G</mi><mo>≤</mo><msub><mrow><mi>SL</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>C</mi><mo>)</mo></math></span> act on <span><math><mi>R</mi><mo>=</mo><mi>C</mi><mo>[</mo><msub><mrow><mi>X</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>]</mo></math></span> by change of variables. Then, the skew-group algebra <span><math><mi>R</mi><mo>⁎</mo><mi>G</mi></math></span> is bimodule <span><math><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>-Calabi-Yau. In certain circumstances, this algebra admits a locally finite-dimensional grading of Gorenstein parameter 1, in which case it is the <span><math><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>-preprojective algebra of its <em>n</em>-representation infinite degree 0 piece, as defined in <span>[10]</span>. If the group <em>G</em> is abelian, the <span><math><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>-preprojective algebra is said to be of type <span><math><mover><mrow><mi>A</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span>. For a given group <em>G</em>, it is not obvious whether <span><math><mi>R</mi><mo>⁎</mo><mi>G</mi></math></span> admits such a grading making it into an <span><math><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>-preprojective algebra. We study the case when <span><math><mi>n</mi><mo>=</mo><mn>2</mn></math></span> and <em>G</em> is abelian. We give an explicit classification of groups such that <span><math><mi>R</mi><mo>⁎</mo><mi>G</mi></math></span> is 3-preprojective by constructing such gradings. This is possible as long as <em>G</em> is not a subgroup of <span><math><msub><mrow><mi>SL</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>C</mi><mo>)</mo></math></span> and not <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>×</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. For a fixed <em>G</em>, the algebra <span><math><mi>R</mi><mo>⁎</mo><mi>G</mi></math></span> admits different 3-preprojective gradings, so we associate a type to a grading and classify all types. Then we show that gradings of the same type are related by a certain kind of mutation. This gives a classification of 2-representation infinite algebras of type <span><math><mover><mrow><mi>A</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span>. The involved quivers are those arising from hexagonal dimer models on the torus, and the gradings we consider correspond to perfect matchings on the dimer, or equivalently to periodic lozenge tilings of the plane. Consequently, we classify these tilings up to flips, which correspond to the mutation we consider.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022404924001579/pdfft?md5=0a6792a213bba8d7f8d057c5a015caf7&pid=1-s2.0-S0022404924001579-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The 3-preprojective algebras of type A˜\",\"authors\":\"Darius Dramburg ,&nbsp;Oleksandra Gasanova\",\"doi\":\"10.1016/j.jpaa.2024.107760\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span><math><mi>G</mi><mo>≤</mo><msub><mrow><mi>SL</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>C</mi><mo>)</mo></math></span> act on <span><math><mi>R</mi><mo>=</mo><mi>C</mi><mo>[</mo><msub><mrow><mi>X</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>]</mo></math></span> by change of variables. Then, the skew-group algebra <span><math><mi>R</mi><mo>⁎</mo><mi>G</mi></math></span> is bimodule <span><math><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>-Calabi-Yau. In certain circumstances, this algebra admits a locally finite-dimensional grading of Gorenstein parameter 1, in which case it is the <span><math><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>-preprojective algebra of its <em>n</em>-representation infinite degree 0 piece, as defined in <span>[10]</span>. If the group <em>G</em> is abelian, the <span><math><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>-preprojective algebra is said to be of type <span><math><mover><mrow><mi>A</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span>. For a given group <em>G</em>, it is not obvious whether <span><math><mi>R</mi><mo>⁎</mo><mi>G</mi></math></span> admits such a grading making it into an <span><math><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>-preprojective algebra. We study the case when <span><math><mi>n</mi><mo>=</mo><mn>2</mn></math></span> and <em>G</em> is abelian. We give an explicit classification of groups such that <span><math><mi>R</mi><mo>⁎</mo><mi>G</mi></math></span> is 3-preprojective by constructing such gradings. This is possible as long as <em>G</em> is not a subgroup of <span><math><msub><mrow><mi>SL</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>C</mi><mo>)</mo></math></span> and not <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>×</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. For a fixed <em>G</em>, the algebra <span><math><mi>R</mi><mo>⁎</mo><mi>G</mi></math></span> admits different 3-preprojective gradings, so we associate a type to a grading and classify all types. Then we show that gradings of the same type are related by a certain kind of mutation. This gives a classification of 2-representation infinite algebras of type <span><math><mover><mrow><mi>A</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span>. The involved quivers are those arising from hexagonal dimer models on the torus, and the gradings we consider correspond to perfect matchings on the dimer, or equivalently to periodic lozenge tilings of the plane. Consequently, we classify these tilings up to flips, which correspond to the mutation we consider.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0022404924001579/pdfft?md5=0a6792a213bba8d7f8d057c5a015caf7&pid=1-s2.0-S0022404924001579-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022404924001579\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404924001579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 G≤SLn+1(C) 通过变量变化作用于 R=C[X1,...,Xn+1] 。那么,斜群代数 R⁎G 是双模 (n+1)-Calabi-Yau 的。在某些情况下,这个代数允许一个戈伦斯坦参数为 1 的局部有限维分级,在这种情况下,它就是其 n 代表无限度 0 片的 (n+1)- 前投影代数,如 [10] 所定义。如果群 G 是无性的,则 (n+1)- 前投影代数被称为 A˜ 型。对于给定的群 G,R⁎G 是否允许这样的分级使其成为 (n+1)-preprojective 代数并不明显。我们研究的是 n=2 且 G 是无性的情况。通过构建这样的分级,我们给出了 R⁎G 是 3-前投影的群的明确分类。只要 G 不是 SL2(C) 的子群,也不是 C2×C2,这就是可能的。对于固定的 G,R⁎G 代数允许不同的 3-preprojective 梯度,因此我们将一个类型与一个梯度相关联,并对所有类型进行分类。然后,我们证明同一类型的级数通过某种突变而相互关联。这就给出了 A˜类型的 2 代表无限代数的分类。所涉及的四元组是由环面上的六边形二聚体模型产生的,而我们所考虑的渐变对应于二聚体上的完全匹配,或者等价于平面上的周期性菱形渐变。因此,我们将这些倾斜分类为翻转,这与我们考虑的突变相对应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
The 3-preprojective algebras of type A˜

Let GSLn+1(C) act on R=C[X1,,Xn+1] by change of variables. Then, the skew-group algebra RG is bimodule (n+1)-Calabi-Yau. In certain circumstances, this algebra admits a locally finite-dimensional grading of Gorenstein parameter 1, in which case it is the (n+1)-preprojective algebra of its n-representation infinite degree 0 piece, as defined in [10]. If the group G is abelian, the (n+1)-preprojective algebra is said to be of type A˜. For a given group G, it is not obvious whether RG admits such a grading making it into an (n+1)-preprojective algebra. We study the case when n=2 and G is abelian. We give an explicit classification of groups such that RG is 3-preprojective by constructing such gradings. This is possible as long as G is not a subgroup of SL2(C) and not C2×C2. For a fixed G, the algebra RG admits different 3-preprojective gradings, so we associate a type to a grading and classify all types. Then we show that gradings of the same type are related by a certain kind of mutation. This gives a classification of 2-representation infinite algebras of type A˜. The involved quivers are those arising from hexagonal dimer models on the torus, and the gradings we consider correspond to perfect matchings on the dimer, or equivalently to periodic lozenge tilings of the plane. Consequently, we classify these tilings up to flips, which correspond to the mutation we consider.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信