随机复合物的简单基尔霍夫指数

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Woong Kook , Kang-Ju Lee
{"title":"随机复合物的简单基尔霍夫指数","authors":"Woong Kook ,&nbsp;Kang-Ju Lee","doi":"10.1016/j.aam.2024.102733","DOIUrl":null,"url":null,"abstract":"<div><p>Kirchhoff index is an electrical network-theoretic invariant which is defined as the sum of effective resistances between all pairs of vertices. As a robustness measure of simplicial networks, a simplicial analogue of the Kirchhoff index is defined to be the sum of simplicial effective resistances for all subsets of vertices of size dimension plus one. In this paper, we investigate the Kirchhoff index of random simplicial complexes as a generalization of random graphs. We present a formula for the expectation of the random variable and show how it concentrates around the expectation. We also perform numerical experiments revealing that the expectation and the fluctuation are still valid for realizations of the random simplicial Kirchhoff index.</p></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simplicial Kirchhoff index of random complexes\",\"authors\":\"Woong Kook ,&nbsp;Kang-Ju Lee\",\"doi\":\"10.1016/j.aam.2024.102733\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Kirchhoff index is an electrical network-theoretic invariant which is defined as the sum of effective resistances between all pairs of vertices. As a robustness measure of simplicial networks, a simplicial analogue of the Kirchhoff index is defined to be the sum of simplicial effective resistances for all subsets of vertices of size dimension plus one. In this paper, we investigate the Kirchhoff index of random simplicial complexes as a generalization of random graphs. We present a formula for the expectation of the random variable and show how it concentrates around the expectation. We also perform numerical experiments revealing that the expectation and the fluctuation are still valid for realizations of the random simplicial Kirchhoff index.</p></div>\",\"PeriodicalId\":50877,\"journal\":{\"name\":\"Advances in Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0196885824000654\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885824000654","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

基尔霍夫指数是一种电气网络理论不变量,定义为所有顶点对之间的有效电阻之和。作为简单网络的鲁棒性度量,基尔霍夫指数的简单类似物被定义为大小维数加一的所有顶点子集的简单有效电阻之和。在本文中,我们将随机简单复合物的基尔霍夫指数作为随机图的一般化进行研究。我们提出了随机变量的期望值公式,并展示了它如何集中在期望值附近。我们还进行了数值实验,揭示了期望和波动对于随机简并基尔霍夫指数的实现仍然有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simplicial Kirchhoff index of random complexes

Kirchhoff index is an electrical network-theoretic invariant which is defined as the sum of effective resistances between all pairs of vertices. As a robustness measure of simplicial networks, a simplicial analogue of the Kirchhoff index is defined to be the sum of simplicial effective resistances for all subsets of vertices of size dimension plus one. In this paper, we investigate the Kirchhoff index of random simplicial complexes as a generalization of random graphs. We present a formula for the expectation of the random variable and show how it concentrates around the expectation. We also perform numerical experiments revealing that the expectation and the fluctuation are still valid for realizations of the random simplicial Kirchhoff index.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Applied Mathematics
Advances in Applied Mathematics 数学-应用数学
CiteScore
2.00
自引率
9.10%
发文量
88
审稿时长
85 days
期刊介绍: Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas. Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信