{"title":"差异上升序列","authors":"Mark Dukes , Bruce E. Sagan","doi":"10.1016/j.aam.2024.102736","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mi>α</mi><mo>=</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>…</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> be a sequence of nonnegative integers. The ascent set of <em>α</em>, Asc <em>α</em>, consists of all indices <em>k</em> where <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>></mo><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>. An ascent sequence is <em>α</em> where the growth of the <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> is bounded by the elements of Asc <em>α</em>. These sequences were introduced by Bousquet-Mélou, Claesson, Dukes and Kitaev and have many wonderful properties. In particular, they are in bijection with unlabeled <span><math><mo>(</mo><mn>2</mn><mo>+</mo><mn>2</mn><mo>)</mo></math></span>-free posets, permutations avoiding a particular bivincular pattern, certain upper-triangular nonnegative integer matrices, and a class of matchings. A weak ascent of <em>α</em> is an index <em>k</em> with <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>≥</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> and weak ascent sequences are defined analogously to ascent sequences. These were studied by Bényi, Claesson and Dukes and shown to have analogous equinumerous sets. Given a nonnegative integer <em>d</em>, we define a difference <em>d</em> ascent to be an index <em>k</em> such that <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>></mo><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>−</mo><mi>d</mi></math></span>. We study the properties of the corresponding <em>d</em>-ascent sequences, showing that some of the maps from the weak case can be extended to bijections for general <em>d</em> while the extensions of others continue to be injective (but not surjective). We also make connections with other combinatorial objects such as rooted duplication trees and restricted growth functions.</p></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Difference ascent sequences\",\"authors\":\"Mark Dukes , Bruce E. Sagan\",\"doi\":\"10.1016/j.aam.2024.102736\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span><math><mi>α</mi><mo>=</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>…</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> be a sequence of nonnegative integers. The ascent set of <em>α</em>, Asc <em>α</em>, consists of all indices <em>k</em> where <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>></mo><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>. An ascent sequence is <em>α</em> where the growth of the <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> is bounded by the elements of Asc <em>α</em>. These sequences were introduced by Bousquet-Mélou, Claesson, Dukes and Kitaev and have many wonderful properties. In particular, they are in bijection with unlabeled <span><math><mo>(</mo><mn>2</mn><mo>+</mo><mn>2</mn><mo>)</mo></math></span>-free posets, permutations avoiding a particular bivincular pattern, certain upper-triangular nonnegative integer matrices, and a class of matchings. A weak ascent of <em>α</em> is an index <em>k</em> with <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>≥</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> and weak ascent sequences are defined analogously to ascent sequences. These were studied by Bényi, Claesson and Dukes and shown to have analogous equinumerous sets. Given a nonnegative integer <em>d</em>, we define a difference <em>d</em> ascent to be an index <em>k</em> such that <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>></mo><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>−</mo><mi>d</mi></math></span>. We study the properties of the corresponding <em>d</em>-ascent sequences, showing that some of the maps from the weak case can be extended to bijections for general <em>d</em> while the extensions of others continue to be injective (but not surjective). We also make connections with other combinatorial objects such as rooted duplication trees and restricted growth functions.</p></div>\",\"PeriodicalId\":50877,\"journal\":{\"name\":\"Advances in Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S019688582400068X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S019688582400068X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
设 α=a1a2...an 为非负整数序列。α 的上升集合 Asc α 包含所有 ak+1>ak 的指数 k。上升序列是 α,其中 ak 的增长以 Asc α 中的元素为界。这些序列由布斯凯-梅卢、克莱松、杜克斯和基塔耶夫提出,具有许多奇妙的性质。特别是,它们与无标记 (2+2)-free posets、避免特定双频模式的排列、某些上三角非负整数矩阵和一类匹配有双射关系。α的弱上升是一个具有 ak+1≥ak 的索引 k,弱上升序列的定义类似于上升序列。贝尼(Bényi)、克莱森(Claesson)和杜克斯(Dukes)对这些序列进行了研究,并证明它们具有类似的等比数列集。给定一个非负整数 d,我们将差 d 上升定义为一个索引 k,使得 ak+1>ak-d 。我们研究了相应的 d 升序的性质,表明弱情况下的一些映射可以扩展为一般 d 的双射,而其他映射的扩展仍然是注入式的(但不是投射式的)。我们还把它与其他组合对象联系起来,比如有根复制树和受限增长函数。
Let be a sequence of nonnegative integers. The ascent set of α, Asc α, consists of all indices k where . An ascent sequence is α where the growth of the is bounded by the elements of Asc α. These sequences were introduced by Bousquet-Mélou, Claesson, Dukes and Kitaev and have many wonderful properties. In particular, they are in bijection with unlabeled -free posets, permutations avoiding a particular bivincular pattern, certain upper-triangular nonnegative integer matrices, and a class of matchings. A weak ascent of α is an index k with and weak ascent sequences are defined analogously to ascent sequences. These were studied by Bényi, Claesson and Dukes and shown to have analogous equinumerous sets. Given a nonnegative integer d, we define a difference d ascent to be an index k such that . We study the properties of the corresponding d-ascent sequences, showing that some of the maps from the weak case can be extended to bijections for general d while the extensions of others continue to be injective (but not surjective). We also make connections with other combinatorial objects such as rooted duplication trees and restricted growth functions.
期刊介绍:
Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas.
Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.