通过空气固化提高烯丙基hydridopolycarbosilane(AHPCS)衍生碳化硅膜的氢选择性

IF 8.4 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Gusni Sushanti, Norihiro Moriyama, Hiroki Nagasawa, Masakoto Kanezashi, Toshinori Tsuru
{"title":"通过空气固化提高烯丙基hydridopolycarbosilane(AHPCS)衍生碳化硅膜的氢选择性","authors":"Gusni Sushanti,&nbsp;Norihiro Moriyama,&nbsp;Hiroki Nagasawa,&nbsp;Masakoto Kanezashi,&nbsp;Toshinori Tsuru","doi":"10.1016/j.memsci.2024.123053","DOIUrl":null,"url":null,"abstract":"<div><p>Hydrogen is a critical element in numerous industrial processes and as a clean energy source. This study investigates Allylhydridopolycarbosilane (AHPCS)-derived membranes as a viable alternative to conventional Silica (Si) membranes for hydrogen separation. The AHPCS membranes were fabricated using a three-step process involving pre-firing at 300 °C in N<sub>2</sub>, air curing, and pyrolysis at 700 °C in N<sub>2</sub>. By optimizing the air-curing temperatures, the cross-linking of AHPCS-derived membranes was improved, leading to enhanced hydrogen selectivity. The highest H<sub>2</sub> permeance of ∼1 × 10<sup>−6</sup> mol/(m<sup>2</sup> s Pa), accompanied by H<sub>2</sub>/N<sub>2</sub> selectivity of ∼200 and H<sub>2</sub>/C<sub>3</sub>H<sub>8</sub> selectivity of 3386, achieved through air curing at 600 °C followed by pyrolysis at 700 °C. AHPCS membranes showcased remarkable selectivity for H<sub>2</sub>/N<sub>2</sub> with low H<sub>2</sub> activation energy (3−5 kJ/mol), clearly surpassing silica membranes and demonstrating their superior performance. These findings underscore the potential of AHPCS membranes for gas separation and purification applications, marking a significant stride in membrane science.</p></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":null,"pages":null},"PeriodicalIF":8.4000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced hydrogen selectivity of allylhydridopolycarbosilane (AHPCS)-derived silicon carbide membranes via air curing\",\"authors\":\"Gusni Sushanti,&nbsp;Norihiro Moriyama,&nbsp;Hiroki Nagasawa,&nbsp;Masakoto Kanezashi,&nbsp;Toshinori Tsuru\",\"doi\":\"10.1016/j.memsci.2024.123053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Hydrogen is a critical element in numerous industrial processes and as a clean energy source. This study investigates Allylhydridopolycarbosilane (AHPCS)-derived membranes as a viable alternative to conventional Silica (Si) membranes for hydrogen separation. The AHPCS membranes were fabricated using a three-step process involving pre-firing at 300 °C in N<sub>2</sub>, air curing, and pyrolysis at 700 °C in N<sub>2</sub>. By optimizing the air-curing temperatures, the cross-linking of AHPCS-derived membranes was improved, leading to enhanced hydrogen selectivity. The highest H<sub>2</sub> permeance of ∼1 × 10<sup>−6</sup> mol/(m<sup>2</sup> s Pa), accompanied by H<sub>2</sub>/N<sub>2</sub> selectivity of ∼200 and H<sub>2</sub>/C<sub>3</sub>H<sub>8</sub> selectivity of 3386, achieved through air curing at 600 °C followed by pyrolysis at 700 °C. AHPCS membranes showcased remarkable selectivity for H<sub>2</sub>/N<sub>2</sub> with low H<sub>2</sub> activation energy (3−5 kJ/mol), clearly surpassing silica membranes and demonstrating their superior performance. These findings underscore the potential of AHPCS membranes for gas separation and purification applications, marking a significant stride in membrane science.</p></div>\",\"PeriodicalId\":368,\"journal\":{\"name\":\"Journal of Membrane Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Membrane Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0376738824006471\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0376738824006471","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

氢是众多工业流程中的关键元素,也是一种清洁能源。本研究调查了烯丙基氢聚碳硅烷(AHPCS)衍生膜作为传统硅(Si)膜的可行替代品用于氢气分离的情况。AHPCS 膜采用三步法制造,包括在氮气中 300 °C 预烧、空气固化和在氮气中 700 °C 高温分解。通过优化空气固化温度,AHPCS 衍生膜的交联得到了改善,从而提高了氢气选择性。通过在 600 °C 下空气固化,然后在 700 °C 下热解,实现了最高的 H2 渗透率 ∼1 × 10-6 mol/(m2 s Pa),H2/N2 选择性 ∼200 和 H2/C3H8 选择性 3386。AHPCS 膜以较低的 H2 活化能(3-5 kJ/mol)显示了对 H2/N2 的显著选择性,明显超过了二氧化硅膜,证明了其卓越的性能。这些发现强调了 AHPCS 膜在气体分离和净化应用方面的潜力,标志着膜科学取得了重大进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhanced hydrogen selectivity of allylhydridopolycarbosilane (AHPCS)-derived silicon carbide membranes via air curing

Enhanced hydrogen selectivity of allylhydridopolycarbosilane (AHPCS)-derived silicon carbide membranes via air curing

Hydrogen is a critical element in numerous industrial processes and as a clean energy source. This study investigates Allylhydridopolycarbosilane (AHPCS)-derived membranes as a viable alternative to conventional Silica (Si) membranes for hydrogen separation. The AHPCS membranes were fabricated using a three-step process involving pre-firing at 300 °C in N2, air curing, and pyrolysis at 700 °C in N2. By optimizing the air-curing temperatures, the cross-linking of AHPCS-derived membranes was improved, leading to enhanced hydrogen selectivity. The highest H2 permeance of ∼1 × 10−6 mol/(m2 s Pa), accompanied by H2/N2 selectivity of ∼200 and H2/C3H8 selectivity of 3386, achieved through air curing at 600 °C followed by pyrolysis at 700 °C. AHPCS membranes showcased remarkable selectivity for H2/N2 with low H2 activation energy (3−5 kJ/mol), clearly surpassing silica membranes and demonstrating their superior performance. These findings underscore the potential of AHPCS membranes for gas separation and purification applications, marking a significant stride in membrane science.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Membrane Science
Journal of Membrane Science 工程技术-高分子科学
CiteScore
17.10
自引率
17.90%
发文量
1031
审稿时长
2.5 months
期刊介绍: The Journal of Membrane Science is a publication that focuses on membrane systems and is aimed at academic and industrial chemists, chemical engineers, materials scientists, and membranologists. It publishes original research and reviews on various aspects of membrane transport, membrane formation/structure, fouling, module/process design, and processes/applications. The journal primarily focuses on the structure, function, and performance of non-biological membranes but also includes papers that relate to biological membranes. The Journal of Membrane Science publishes Full Text Papers, State-of-the-Art Reviews, Letters to the Editor, and Perspectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信