Joe Kennedy PhD , Peter Alexander PhD , Lindsey Smith Taillie PhD , Prof Lindsay M Jaacks PhD
{"title":"美国减少加工肉类消费和未加工红肉消费对 2 型糖尿病、心血管疾病、结直肠癌发病率和死亡率的影响估算:一项微观模拟研究。","authors":"Joe Kennedy PhD , Peter Alexander PhD , Lindsey Smith Taillie PhD , Prof Lindsay M Jaacks PhD","doi":"10.1016/S2542-5196(24)00118-9","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>High consumption of processed meat and unprocessed red meat is associated with increased risk of multiple chronic diseases, although there is substantial uncertainty regarding the relationship for unprocessed red meat. We developed a microsimulation model to estimate how reductions in processed meat and unprocessed red meat consumption could affect rates of type 2 diabetes, cardiovascular disease, colorectal cancer, and mortality in the US adult population.</p></div><div><h3>Methods</h3><p>We used data from two versions of the US National Health and Nutrition Examination Survey, one conducted during 2015–16 and one conducted during 2017–18, to create a simulated US population. The starting cohort was restricted to respondents aged 18 years or older who were not pregnant and had 2 days of dietary-recall data. First, we used previously developed risk models to estimate the baseline disease risk of an individual. For type 2 diabetes we used a logistic-regression model and for cardiovascular disease and colorectal cancer we used Cox proportional-hazard models. We then multiplied baseline risk by relative risk associated with individual processed meat and unprocessed red meat consumption. Prevented occurrences of type 2 diabetes, cardiovascular disease, colorectal cancer, and mortality were computed by taking the difference between the incidence in the baseline and intervention scenarios. All stages were repeated for ten iterations to correspond to a 10-year time span. Scenarios were reductions of 5%, 10%, 30%, 50%, 75%, and 100% in grams consumed of processed meat, unprocessed red meat, or both. Each scenario was repeated 50 times for uncertainty analysis.</p></div><div><h3>Findings</h3><p>The total number of individual respondents included in the simulated population was 8665, representing 242 021 876 US adults. 4493 (51·9%) of 8665 individuals were female and 4172 (48·1%) were male; mean age was 49·54 years (SD 18·38). At baseline, weighted mean daily consumption of processed meat was 29·1 g, with a 30% reduction being 8·7 g per day, and of unprocessed red meat was 46·7 g, with a 30% reduction being 14·0 g per day. We estimated that a 30% reduction in processed meat intake alone could lead to 352 900 (95% uncertainty interval 345 500–359 900) fewer occurrences of type 2 diabetes, 92 500 (85 600–99 900) fewer occurrences of cardiovascular disease, 53 300 (51 400–55 000) fewer occurrences of colorectal cancer, and 16 700 (15 300–17 700) fewer all-cause deaths during the 10-year period. A 30% reduction in unprocessed red meat intake alone could lead to 732 600 (725 700–740 400) fewer occurrences of type 2 diabetes, 291 500 (283 900–298 800) fewer occurrences of cardiovascular disease, 32 200 (31 500–32 700) fewer occurrences of colorectal cancer, and 46 100 (45 300–47 200) fewer all-cause deaths during the 10-year period. A 30% reduction in both processed meat and unprocessed red meat intake could lead to 1 073 400 (1 060 100–1 084 700) fewer occurrences of type 2 diabetes, 382 400 (372 100–391 000) fewer occurrences of cardiovascular disease, 84 400 (82 100–86 200) fewer occurrences of colorectal cancer, and 62 200 (60 600–64 400) fewer all-cause deaths during the 10-year period.</p></div><div><h3>Interpretation</h3><p>Reductions in processed meat consumption could reduce the burden of some chronic diseases in the USA. However, more research is needed to increase certainty in the estimated effects of reducing unprocessed red meat consumption.</p></div><div><h3>Funding</h3><p>The Wellcome Trust.</p></div>","PeriodicalId":48548,"journal":{"name":"Lancet Planetary Health","volume":"8 7","pages":"Pages e441-e451"},"PeriodicalIF":24.1000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2542519624001189/pdfft?md5=b24f21e4f1ec6fc4faaa16aaa2d8520d&pid=1-s2.0-S2542519624001189-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Estimated effects of reductions in processed meat consumption and unprocessed red meat consumption on occurrences of type 2 diabetes, cardiovascular disease, colorectal cancer, and mortality in the USA: a microsimulation study\",\"authors\":\"Joe Kennedy PhD , Peter Alexander PhD , Lindsey Smith Taillie PhD , Prof Lindsay M Jaacks PhD\",\"doi\":\"10.1016/S2542-5196(24)00118-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>High consumption of processed meat and unprocessed red meat is associated with increased risk of multiple chronic diseases, although there is substantial uncertainty regarding the relationship for unprocessed red meat. We developed a microsimulation model to estimate how reductions in processed meat and unprocessed red meat consumption could affect rates of type 2 diabetes, cardiovascular disease, colorectal cancer, and mortality in the US adult population.</p></div><div><h3>Methods</h3><p>We used data from two versions of the US National Health and Nutrition Examination Survey, one conducted during 2015–16 and one conducted during 2017–18, to create a simulated US population. The starting cohort was restricted to respondents aged 18 years or older who were not pregnant and had 2 days of dietary-recall data. First, we used previously developed risk models to estimate the baseline disease risk of an individual. For type 2 diabetes we used a logistic-regression model and for cardiovascular disease and colorectal cancer we used Cox proportional-hazard models. We then multiplied baseline risk by relative risk associated with individual processed meat and unprocessed red meat consumption. Prevented occurrences of type 2 diabetes, cardiovascular disease, colorectal cancer, and mortality were computed by taking the difference between the incidence in the baseline and intervention scenarios. All stages were repeated for ten iterations to correspond to a 10-year time span. Scenarios were reductions of 5%, 10%, 30%, 50%, 75%, and 100% in grams consumed of processed meat, unprocessed red meat, or both. Each scenario was repeated 50 times for uncertainty analysis.</p></div><div><h3>Findings</h3><p>The total number of individual respondents included in the simulated population was 8665, representing 242 021 876 US adults. 4493 (51·9%) of 8665 individuals were female and 4172 (48·1%) were male; mean age was 49·54 years (SD 18·38). At baseline, weighted mean daily consumption of processed meat was 29·1 g, with a 30% reduction being 8·7 g per day, and of unprocessed red meat was 46·7 g, with a 30% reduction being 14·0 g per day. We estimated that a 30% reduction in processed meat intake alone could lead to 352 900 (95% uncertainty interval 345 500–359 900) fewer occurrences of type 2 diabetes, 92 500 (85 600–99 900) fewer occurrences of cardiovascular disease, 53 300 (51 400–55 000) fewer occurrences of colorectal cancer, and 16 700 (15 300–17 700) fewer all-cause deaths during the 10-year period. A 30% reduction in unprocessed red meat intake alone could lead to 732 600 (725 700–740 400) fewer occurrences of type 2 diabetes, 291 500 (283 900–298 800) fewer occurrences of cardiovascular disease, 32 200 (31 500–32 700) fewer occurrences of colorectal cancer, and 46 100 (45 300–47 200) fewer all-cause deaths during the 10-year period. A 30% reduction in both processed meat and unprocessed red meat intake could lead to 1 073 400 (1 060 100–1 084 700) fewer occurrences of type 2 diabetes, 382 400 (372 100–391 000) fewer occurrences of cardiovascular disease, 84 400 (82 100–86 200) fewer occurrences of colorectal cancer, and 62 200 (60 600–64 400) fewer all-cause deaths during the 10-year period.</p></div><div><h3>Interpretation</h3><p>Reductions in processed meat consumption could reduce the burden of some chronic diseases in the USA. However, more research is needed to increase certainty in the estimated effects of reducing unprocessed red meat consumption.</p></div><div><h3>Funding</h3><p>The Wellcome Trust.</p></div>\",\"PeriodicalId\":48548,\"journal\":{\"name\":\"Lancet Planetary Health\",\"volume\":\"8 7\",\"pages\":\"Pages e441-e451\"},\"PeriodicalIF\":24.1000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2542519624001189/pdfft?md5=b24f21e4f1ec6fc4faaa16aaa2d8520d&pid=1-s2.0-S2542519624001189-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lancet Planetary Health\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2542519624001189\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lancet Planetary Health","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542519624001189","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Estimated effects of reductions in processed meat consumption and unprocessed red meat consumption on occurrences of type 2 diabetes, cardiovascular disease, colorectal cancer, and mortality in the USA: a microsimulation study
Background
High consumption of processed meat and unprocessed red meat is associated with increased risk of multiple chronic diseases, although there is substantial uncertainty regarding the relationship for unprocessed red meat. We developed a microsimulation model to estimate how reductions in processed meat and unprocessed red meat consumption could affect rates of type 2 diabetes, cardiovascular disease, colorectal cancer, and mortality in the US adult population.
Methods
We used data from two versions of the US National Health and Nutrition Examination Survey, one conducted during 2015–16 and one conducted during 2017–18, to create a simulated US population. The starting cohort was restricted to respondents aged 18 years or older who were not pregnant and had 2 days of dietary-recall data. First, we used previously developed risk models to estimate the baseline disease risk of an individual. For type 2 diabetes we used a logistic-regression model and for cardiovascular disease and colorectal cancer we used Cox proportional-hazard models. We then multiplied baseline risk by relative risk associated with individual processed meat and unprocessed red meat consumption. Prevented occurrences of type 2 diabetes, cardiovascular disease, colorectal cancer, and mortality were computed by taking the difference between the incidence in the baseline and intervention scenarios. All stages were repeated for ten iterations to correspond to a 10-year time span. Scenarios were reductions of 5%, 10%, 30%, 50%, 75%, and 100% in grams consumed of processed meat, unprocessed red meat, or both. Each scenario was repeated 50 times for uncertainty analysis.
Findings
The total number of individual respondents included in the simulated population was 8665, representing 242 021 876 US adults. 4493 (51·9%) of 8665 individuals were female and 4172 (48·1%) were male; mean age was 49·54 years (SD 18·38). At baseline, weighted mean daily consumption of processed meat was 29·1 g, with a 30% reduction being 8·7 g per day, and of unprocessed red meat was 46·7 g, with a 30% reduction being 14·0 g per day. We estimated that a 30% reduction in processed meat intake alone could lead to 352 900 (95% uncertainty interval 345 500–359 900) fewer occurrences of type 2 diabetes, 92 500 (85 600–99 900) fewer occurrences of cardiovascular disease, 53 300 (51 400–55 000) fewer occurrences of colorectal cancer, and 16 700 (15 300–17 700) fewer all-cause deaths during the 10-year period. A 30% reduction in unprocessed red meat intake alone could lead to 732 600 (725 700–740 400) fewer occurrences of type 2 diabetes, 291 500 (283 900–298 800) fewer occurrences of cardiovascular disease, 32 200 (31 500–32 700) fewer occurrences of colorectal cancer, and 46 100 (45 300–47 200) fewer all-cause deaths during the 10-year period. A 30% reduction in both processed meat and unprocessed red meat intake could lead to 1 073 400 (1 060 100–1 084 700) fewer occurrences of type 2 diabetes, 382 400 (372 100–391 000) fewer occurrences of cardiovascular disease, 84 400 (82 100–86 200) fewer occurrences of colorectal cancer, and 62 200 (60 600–64 400) fewer all-cause deaths during the 10-year period.
Interpretation
Reductions in processed meat consumption could reduce the burden of some chronic diseases in the USA. However, more research is needed to increase certainty in the estimated effects of reducing unprocessed red meat consumption.
期刊介绍:
The Lancet Planetary Health is a gold Open Access journal dedicated to investigating and addressing the multifaceted determinants of healthy human civilizations and their impact on natural systems. Positioned as a key player in sustainable development, the journal covers a broad, interdisciplinary scope, encompassing areas such as poverty, nutrition, gender equity, water and sanitation, energy, economic growth, industrialization, inequality, urbanization, human consumption and production, climate change, ocean health, land use, peace, and justice.
With a commitment to publishing high-quality research, comment, and correspondence, it aims to be the leading journal for sustainable development in the face of unprecedented dangers and threats.