Hao Qin, Jie Liu, Yi Qu, Yang-Yang Li, Ya-Lan Xu, Yi-Fang Yan
{"title":"预测卵巢浆液性囊腺癌患者生存期和免疫疗法疗效的瘤内微生物群生物标志物。","authors":"Hao Qin, Jie Liu, Yi Qu, Yang-Yang Li, Ya-Lan Xu, Yi-Fang Yan","doi":"10.1186/s13048-024-01464-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Ovarian serous cystadenocarcinoma, accounting for about 90% of ovarian cancers, is frequently diagnosed at advanced stages, leading to suboptimal treatment outcomes. Given the malignant nature of the disease, effective biomarkers for accurate prediction and personalized treatment remain an urgent clinical need.</p><p><strong>Methods: </strong>In this study, we analyzed the microbial contents of 453 ovarian serous cystadenocarcinoma and 68 adjacent non-cancerous samples. A univariate Cox regression model was used to identify microorganisms significantly associated with survival and a prognostic risk score model constructed using LASSO Cox regression analysis. Patients were subsequently categorized into high-risk and low-risk groups based on their risk scores.</p><p><strong>Results: </strong>Survival analysis revealed that patients in the low-risk group had a higher overall survival rate. A nomogram was constructed for easy visualization of the prognostic model. Analysis of immune cell infiltration and immune checkpoint gene expression in both groups showed that both parameters were positively correlated with the risk level, indicating an increased immune response in higher risk groups.</p><p><strong>Conclusion: </strong>Our findings suggest that microbial profiles in ovarian serous cystadenocarcinoma may serve as viable clinical prognostic indicators. This study provides novel insights into the potential impact of intratumoral microbial communities on disease prognosis and opens avenues for future therapeutic interventions targeting these microorganisms.</p>","PeriodicalId":16610,"journal":{"name":"Journal of Ovarian Research","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11227176/pdf/","citationCount":"0","resultStr":"{\"title\":\"The intratumoral microbiota biomarkers for predicting survival and efficacy of immunotherapy in patients with ovarian serous cystadenocarcinoma.\",\"authors\":\"Hao Qin, Jie Liu, Yi Qu, Yang-Yang Li, Ya-Lan Xu, Yi-Fang Yan\",\"doi\":\"10.1186/s13048-024-01464-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Ovarian serous cystadenocarcinoma, accounting for about 90% of ovarian cancers, is frequently diagnosed at advanced stages, leading to suboptimal treatment outcomes. Given the malignant nature of the disease, effective biomarkers for accurate prediction and personalized treatment remain an urgent clinical need.</p><p><strong>Methods: </strong>In this study, we analyzed the microbial contents of 453 ovarian serous cystadenocarcinoma and 68 adjacent non-cancerous samples. A univariate Cox regression model was used to identify microorganisms significantly associated with survival and a prognostic risk score model constructed using LASSO Cox regression analysis. Patients were subsequently categorized into high-risk and low-risk groups based on their risk scores.</p><p><strong>Results: </strong>Survival analysis revealed that patients in the low-risk group had a higher overall survival rate. A nomogram was constructed for easy visualization of the prognostic model. Analysis of immune cell infiltration and immune checkpoint gene expression in both groups showed that both parameters were positively correlated with the risk level, indicating an increased immune response in higher risk groups.</p><p><strong>Conclusion: </strong>Our findings suggest that microbial profiles in ovarian serous cystadenocarcinoma may serve as viable clinical prognostic indicators. This study provides novel insights into the potential impact of intratumoral microbial communities on disease prognosis and opens avenues for future therapeutic interventions targeting these microorganisms.</p>\",\"PeriodicalId\":16610,\"journal\":{\"name\":\"Journal of Ovarian Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11227176/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ovarian Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13048-024-01464-7\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"REPRODUCTIVE BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ovarian Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13048-024-01464-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REPRODUCTIVE BIOLOGY","Score":null,"Total":0}
The intratumoral microbiota biomarkers for predicting survival and efficacy of immunotherapy in patients with ovarian serous cystadenocarcinoma.
Background: Ovarian serous cystadenocarcinoma, accounting for about 90% of ovarian cancers, is frequently diagnosed at advanced stages, leading to suboptimal treatment outcomes. Given the malignant nature of the disease, effective biomarkers for accurate prediction and personalized treatment remain an urgent clinical need.
Methods: In this study, we analyzed the microbial contents of 453 ovarian serous cystadenocarcinoma and 68 adjacent non-cancerous samples. A univariate Cox regression model was used to identify microorganisms significantly associated with survival and a prognostic risk score model constructed using LASSO Cox regression analysis. Patients were subsequently categorized into high-risk and low-risk groups based on their risk scores.
Results: Survival analysis revealed that patients in the low-risk group had a higher overall survival rate. A nomogram was constructed for easy visualization of the prognostic model. Analysis of immune cell infiltration and immune checkpoint gene expression in both groups showed that both parameters were positively correlated with the risk level, indicating an increased immune response in higher risk groups.
Conclusion: Our findings suggest that microbial profiles in ovarian serous cystadenocarcinoma may serve as viable clinical prognostic indicators. This study provides novel insights into the potential impact of intratumoral microbial communities on disease prognosis and opens avenues for future therapeutic interventions targeting these microorganisms.
期刊介绍:
Journal of Ovarian Research is an open access, peer reviewed, online journal that aims to provide a forum for high-quality basic and clinical research on ovarian function, abnormalities, and cancer. The journal focuses on research that provides new insights into ovarian functions as well as prevention and treatment of diseases afflicting the organ.
Topical areas include, but are not restricted to:
Ovary development, hormone secretion and regulation
Follicle growth and ovulation
Infertility and Polycystic ovarian syndrome
Regulation of pituitary and other biological functions by ovarian hormones
Ovarian cancer, its prevention, diagnosis and treatment
Drug development and screening
Role of stem cells in ovary development and function.