用于组织工程的聚乳酸同轴系统和聚乳酸与聚(e-己内酯)三层膜所含的芦荟粘液负载明胶电纺纤维。

IF 1 4区 医学 Q4 ENGINEERING, BIOMEDICAL
María Mónica Castillo Ortega, Jesús Manuel Quiroz Castillo, Teresa Del Castillo Castro, Dora Evelia Rodriguez Felix, Hisila Del Carmen Santacruz Ortega, Octavio Manero, Karla Alejandra Lopez Gastelum, Lerma Hanaiy Chan Chan, Diego Hernandez Martinez, Jose Agustin Tapia Hernández, Damian Francisco Plascencia Martínez
{"title":"用于组织工程的聚乳酸同轴系统和聚乳酸与聚(e-己内酯)三层膜所含的芦荟粘液负载明胶电纺纤维。","authors":"María Mónica Castillo Ortega, Jesús Manuel Quiroz Castillo, Teresa Del Castillo Castro, Dora Evelia Rodriguez Felix, Hisila Del Carmen Santacruz Ortega, Octavio Manero, Karla Alejandra Lopez Gastelum, Lerma Hanaiy Chan Chan, Diego Hernandez Martinez, Jose Agustin Tapia Hernández, Damian Francisco Plascencia Martínez","doi":"10.3233/BME-240050","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Polymeric electrospun mats have been used as scaffolds in tissue engineering for the development of novel materials due to its characteristics. The usage of synthetic materials has gone in decline due to environmental problems associated with their synthesis and waste disposal. Biomaterials such as biopolymers have been used recently due to good compatibility on biological applications and sustainability.</p><p><strong>Objective: </strong>The purpose of this work is to obtain novel materials based on synthetic and natural polymers for applications on tissue engineering.</p><p><strong>Methods: </strong>Aloe vera mucilage was obtained, chemically characterized, and used as an active compound contained in electrospun mats. Polymeric scaffolds were obtained in single, coaxial and tri-layer structures, characterized and evaluated in cell culture.</p><p><strong>Results: </strong>Mucilage loaded electrospun fibers showed good compatibility due to formation of hydrogen bonds between polymers and biomolecules from its structure, evidenced by FTIR spectra and thermal properties. Cell viability test showed that most of the obtained mats result on viability higher than 75%, resulting in nontoxic materials, ready to be used on scaffolding applications.</p><p><strong>Conclusion: </strong>Mucilage containing fibers resulted on materials with potential use on scaffolding applications due to their mechanical performance and cell viability results.</p>","PeriodicalId":9109,"journal":{"name":"Bio-medical materials and engineering","volume":" ","pages":"387-399"},"PeriodicalIF":1.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aloe vera mucilage loaded gelatin electrospun fibers contained in polylactic acid coaxial system and polylactic acid and poly(e-caprolactone) tri-layer membranes for tissue engineering.\",\"authors\":\"María Mónica Castillo Ortega, Jesús Manuel Quiroz Castillo, Teresa Del Castillo Castro, Dora Evelia Rodriguez Felix, Hisila Del Carmen Santacruz Ortega, Octavio Manero, Karla Alejandra Lopez Gastelum, Lerma Hanaiy Chan Chan, Diego Hernandez Martinez, Jose Agustin Tapia Hernández, Damian Francisco Plascencia Martínez\",\"doi\":\"10.3233/BME-240050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Polymeric electrospun mats have been used as scaffolds in tissue engineering for the development of novel materials due to its characteristics. The usage of synthetic materials has gone in decline due to environmental problems associated with their synthesis and waste disposal. Biomaterials such as biopolymers have been used recently due to good compatibility on biological applications and sustainability.</p><p><strong>Objective: </strong>The purpose of this work is to obtain novel materials based on synthetic and natural polymers for applications on tissue engineering.</p><p><strong>Methods: </strong>Aloe vera mucilage was obtained, chemically characterized, and used as an active compound contained in electrospun mats. Polymeric scaffolds were obtained in single, coaxial and tri-layer structures, characterized and evaluated in cell culture.</p><p><strong>Results: </strong>Mucilage loaded electrospun fibers showed good compatibility due to formation of hydrogen bonds between polymers and biomolecules from its structure, evidenced by FTIR spectra and thermal properties. Cell viability test showed that most of the obtained mats result on viability higher than 75%, resulting in nontoxic materials, ready to be used on scaffolding applications.</p><p><strong>Conclusion: </strong>Mucilage containing fibers resulted on materials with potential use on scaffolding applications due to their mechanical performance and cell viability results.</p>\",\"PeriodicalId\":9109,\"journal\":{\"name\":\"Bio-medical materials and engineering\",\"volume\":\" \",\"pages\":\"387-399\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bio-medical materials and engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3233/BME-240050\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bio-medical materials and engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3233/BME-240050","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

背景:聚合物电纺垫因其特性被用作组织工程中的支架,用于开发新型材料。由于合成材料的合成和废物处理所带来的环境问题,合成材料的使用已日渐减少。生物材料(如生物聚合物)由于在生物应用方面具有良好的兼容性和可持续性,最近得到了广泛应用:这项工作的目的是获得基于合成和天然聚合物的新型材料,用于组织工程:方法:获得芦荟粘液,对其进行化学表征,并将其用作电纺垫中的活性化合物。获得了单层、同轴和三层结构的聚合物支架,并对其进行了表征和细胞培养评估:傅立叶变换红外光谱和热性能表明,由于聚合物和生物大分子之间形成氢键,粘液负载电纺纤维显示出良好的兼容性。细胞存活率测试表明,获得的大多数纤维毡的存活率高于 75%,因此是无毒材料,可用于支架应用:结论:由于其机械性能和细胞存活率结果,含黏液纤维的材料具有支架应用的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Aloe vera mucilage loaded gelatin electrospun fibers contained in polylactic acid coaxial system and polylactic acid and poly(e-caprolactone) tri-layer membranes for tissue engineering.

Background: Polymeric electrospun mats have been used as scaffolds in tissue engineering for the development of novel materials due to its characteristics. The usage of synthetic materials has gone in decline due to environmental problems associated with their synthesis and waste disposal. Biomaterials such as biopolymers have been used recently due to good compatibility on biological applications and sustainability.

Objective: The purpose of this work is to obtain novel materials based on synthetic and natural polymers for applications on tissue engineering.

Methods: Aloe vera mucilage was obtained, chemically characterized, and used as an active compound contained in electrospun mats. Polymeric scaffolds were obtained in single, coaxial and tri-layer structures, characterized and evaluated in cell culture.

Results: Mucilage loaded electrospun fibers showed good compatibility due to formation of hydrogen bonds between polymers and biomolecules from its structure, evidenced by FTIR spectra and thermal properties. Cell viability test showed that most of the obtained mats result on viability higher than 75%, resulting in nontoxic materials, ready to be used on scaffolding applications.

Conclusion: Mucilage containing fibers resulted on materials with potential use on scaffolding applications due to their mechanical performance and cell viability results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bio-medical materials and engineering
Bio-medical materials and engineering 工程技术-材料科学:生物材料
CiteScore
1.80
自引率
0.00%
发文量
73
审稿时长
6 months
期刊介绍: The aim of Bio-Medical Materials and Engineering is to promote the welfare of humans and to help them keep healthy. This international journal is an interdisciplinary journal that publishes original research papers, review articles and brief notes on materials and engineering for biological and medical systems. Articles in this peer-reviewed journal cover a wide range of topics, including, but not limited to: Engineering as applied to improving diagnosis, therapy, and prevention of disease and injury, and better substitutes for damaged or disabled human organs; Studies of biomaterial interactions with the human body, bio-compatibility, interfacial and interaction problems; Biomechanical behavior under biological and/or medical conditions; Mechanical and biological properties of membrane biomaterials; Cellular and tissue engineering, physiological, biophysical, biochemical bioengineering aspects; Implant failure fields and degradation of implants. Biomimetics engineering and materials including system analysis as supporter for aged people and as rehabilitation; Bioengineering and materials technology as applied to the decontamination against environmental problems; Biosensors, bioreactors, bioprocess instrumentation and control system; Application to food engineering; Standardization problems on biomaterials and related products; Assessment of reliability and safety of biomedical materials and man-machine systems; and Product liability of biomaterials and related products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信