María Mónica Castillo Ortega, Jesús Manuel Quiroz Castillo, Teresa Del Castillo Castro, Dora Evelia Rodriguez Felix, Hisila Del Carmen Santacruz Ortega, Octavio Manero, Karla Alejandra Lopez Gastelum, Lerma Hanaiy Chan Chan, Diego Hernandez Martinez, Jose Agustin Tapia Hernández, Damian Francisco Plascencia Martínez
{"title":"用于组织工程的聚乳酸同轴系统和聚乳酸与聚(e-己内酯)三层膜所含的芦荟粘液负载明胶电纺纤维。","authors":"María Mónica Castillo Ortega, Jesús Manuel Quiroz Castillo, Teresa Del Castillo Castro, Dora Evelia Rodriguez Felix, Hisila Del Carmen Santacruz Ortega, Octavio Manero, Karla Alejandra Lopez Gastelum, Lerma Hanaiy Chan Chan, Diego Hernandez Martinez, Jose Agustin Tapia Hernández, Damian Francisco Plascencia Martínez","doi":"10.3233/BME-240050","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Polymeric electrospun mats have been used as scaffolds in tissue engineering for the development of novel materials due to its characteristics. The usage of synthetic materials has gone in decline due to environmental problems associated with their synthesis and waste disposal. Biomaterials such as biopolymers have been used recently due to good compatibility on biological applications and sustainability.</p><p><strong>Objective: </strong>The purpose of this work is to obtain novel materials based on synthetic and natural polymers for applications on tissue engineering.</p><p><strong>Methods: </strong>Aloe vera mucilage was obtained, chemically characterized, and used as an active compound contained in electrospun mats. Polymeric scaffolds were obtained in single, coaxial and tri-layer structures, characterized and evaluated in cell culture.</p><p><strong>Results: </strong>Mucilage loaded electrospun fibers showed good compatibility due to formation of hydrogen bonds between polymers and biomolecules from its structure, evidenced by FTIR spectra and thermal properties. Cell viability test showed that most of the obtained mats result on viability higher than 75%, resulting in nontoxic materials, ready to be used on scaffolding applications.</p><p><strong>Conclusion: </strong>Mucilage containing fibers resulted on materials with potential use on scaffolding applications due to their mechanical performance and cell viability results.</p>","PeriodicalId":9109,"journal":{"name":"Bio-medical materials and engineering","volume":" ","pages":"387-399"},"PeriodicalIF":1.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aloe vera mucilage loaded gelatin electrospun fibers contained in polylactic acid coaxial system and polylactic acid and poly(e-caprolactone) tri-layer membranes for tissue engineering.\",\"authors\":\"María Mónica Castillo Ortega, Jesús Manuel Quiroz Castillo, Teresa Del Castillo Castro, Dora Evelia Rodriguez Felix, Hisila Del Carmen Santacruz Ortega, Octavio Manero, Karla Alejandra Lopez Gastelum, Lerma Hanaiy Chan Chan, Diego Hernandez Martinez, Jose Agustin Tapia Hernández, Damian Francisco Plascencia Martínez\",\"doi\":\"10.3233/BME-240050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Polymeric electrospun mats have been used as scaffolds in tissue engineering for the development of novel materials due to its characteristics. The usage of synthetic materials has gone in decline due to environmental problems associated with their synthesis and waste disposal. Biomaterials such as biopolymers have been used recently due to good compatibility on biological applications and sustainability.</p><p><strong>Objective: </strong>The purpose of this work is to obtain novel materials based on synthetic and natural polymers for applications on tissue engineering.</p><p><strong>Methods: </strong>Aloe vera mucilage was obtained, chemically characterized, and used as an active compound contained in electrospun mats. Polymeric scaffolds were obtained in single, coaxial and tri-layer structures, characterized and evaluated in cell culture.</p><p><strong>Results: </strong>Mucilage loaded electrospun fibers showed good compatibility due to formation of hydrogen bonds between polymers and biomolecules from its structure, evidenced by FTIR spectra and thermal properties. Cell viability test showed that most of the obtained mats result on viability higher than 75%, resulting in nontoxic materials, ready to be used on scaffolding applications.</p><p><strong>Conclusion: </strong>Mucilage containing fibers resulted on materials with potential use on scaffolding applications due to their mechanical performance and cell viability results.</p>\",\"PeriodicalId\":9109,\"journal\":{\"name\":\"Bio-medical materials and engineering\",\"volume\":\" \",\"pages\":\"387-399\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bio-medical materials and engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3233/BME-240050\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bio-medical materials and engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3233/BME-240050","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Aloe vera mucilage loaded gelatin electrospun fibers contained in polylactic acid coaxial system and polylactic acid and poly(e-caprolactone) tri-layer membranes for tissue engineering.
Background: Polymeric electrospun mats have been used as scaffolds in tissue engineering for the development of novel materials due to its characteristics. The usage of synthetic materials has gone in decline due to environmental problems associated with their synthesis and waste disposal. Biomaterials such as biopolymers have been used recently due to good compatibility on biological applications and sustainability.
Objective: The purpose of this work is to obtain novel materials based on synthetic and natural polymers for applications on tissue engineering.
Methods: Aloe vera mucilage was obtained, chemically characterized, and used as an active compound contained in electrospun mats. Polymeric scaffolds were obtained in single, coaxial and tri-layer structures, characterized and evaluated in cell culture.
Results: Mucilage loaded electrospun fibers showed good compatibility due to formation of hydrogen bonds between polymers and biomolecules from its structure, evidenced by FTIR spectra and thermal properties. Cell viability test showed that most of the obtained mats result on viability higher than 75%, resulting in nontoxic materials, ready to be used on scaffolding applications.
Conclusion: Mucilage containing fibers resulted on materials with potential use on scaffolding applications due to their mechanical performance and cell viability results.
期刊介绍:
The aim of Bio-Medical Materials and Engineering is to promote the welfare of humans and to help them keep healthy. This international journal is an interdisciplinary journal that publishes original research papers, review articles and brief notes on materials and engineering for biological and medical systems. Articles in this peer-reviewed journal cover a wide range of topics, including, but not limited to: Engineering as applied to improving diagnosis, therapy, and prevention of disease and injury, and better substitutes for damaged or disabled human organs; Studies of biomaterial interactions with the human body, bio-compatibility, interfacial and interaction problems; Biomechanical behavior under biological and/or medical conditions; Mechanical and biological properties of membrane biomaterials; Cellular and tissue engineering, physiological, biophysical, biochemical bioengineering aspects; Implant failure fields and degradation of implants. Biomimetics engineering and materials including system analysis as supporter for aged people and as rehabilitation; Bioengineering and materials technology as applied to the decontamination against environmental problems; Biosensors, bioreactors, bioprocess instrumentation and control system; Application to food engineering; Standardization problems on biomaterials and related products; Assessment of reliability and safety of biomedical materials and man-machine systems; and Product liability of biomaterials and related products.