Qi Wang, Chuan Xiang, Xingyu Jiang, Cheng Shi, Zi Wang*, Lizhen Huang* and Lifeng Chi*,
{"title":"通过疏水性聚合物的两性界面掺杂离子,实现高性能有机电化学晶体管。","authors":"Qi Wang, Chuan Xiang, Xingyu Jiang, Cheng Shi, Zi Wang*, Lizhen Huang* and Lifeng Chi*, ","doi":"10.1021/acs.jpclett.4c01484","DOIUrl":null,"url":null,"abstract":"<p >An organic electrochemical transistor (OECT) is one of the promising devices for bioelectronics due to its high transconductance, encompassing low operation voltage, and good compatibility with aqueous conditions. Despite these advantages, the challenge of balancing ion penetration and electron transport remains a significant issue in OECTs. Herein, we present an amphiphilic interface modification strategy to successfully prepare OECTs in aqueous conditions based on a high-mobility hydrophobic polypyrrole derivative. An amphiphilic interface mixed with an amphiphilic polymer and the active layer markedly promotes ion penetration and results in a significant improvement in performance, with the switch time reduced from several seconds to nearly 100 ms and the transconductance increased by an order of magnitude. The high-performance OECTs fabricated by this method show promising applications in high-performance neuromorphic devices and ECG recording in advancing the field of electrochemical transistors.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"15 28","pages":"7175–7182"},"PeriodicalIF":4.8000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Amphiphilic Interface-Mediated Ion Doping for High Performance Organic Electrochemical Transistors with Hydrophobic Polymers\",\"authors\":\"Qi Wang, Chuan Xiang, Xingyu Jiang, Cheng Shi, Zi Wang*, Lizhen Huang* and Lifeng Chi*, \",\"doi\":\"10.1021/acs.jpclett.4c01484\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >An organic electrochemical transistor (OECT) is one of the promising devices for bioelectronics due to its high transconductance, encompassing low operation voltage, and good compatibility with aqueous conditions. Despite these advantages, the challenge of balancing ion penetration and electron transport remains a significant issue in OECTs. Herein, we present an amphiphilic interface modification strategy to successfully prepare OECTs in aqueous conditions based on a high-mobility hydrophobic polypyrrole derivative. An amphiphilic interface mixed with an amphiphilic polymer and the active layer markedly promotes ion penetration and results in a significant improvement in performance, with the switch time reduced from several seconds to nearly 100 ms and the transconductance increased by an order of magnitude. The high-performance OECTs fabricated by this method show promising applications in high-performance neuromorphic devices and ECG recording in advancing the field of electrochemical transistors.</p>\",\"PeriodicalId\":62,\"journal\":{\"name\":\"The Journal of Physical Chemistry Letters\",\"volume\":\"15 28\",\"pages\":\"7175–7182\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry Letters\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpclett.4c01484\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpclett.4c01484","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Amphiphilic Interface-Mediated Ion Doping for High Performance Organic Electrochemical Transistors with Hydrophobic Polymers
An organic electrochemical transistor (OECT) is one of the promising devices for bioelectronics due to its high transconductance, encompassing low operation voltage, and good compatibility with aqueous conditions. Despite these advantages, the challenge of balancing ion penetration and electron transport remains a significant issue in OECTs. Herein, we present an amphiphilic interface modification strategy to successfully prepare OECTs in aqueous conditions based on a high-mobility hydrophobic polypyrrole derivative. An amphiphilic interface mixed with an amphiphilic polymer and the active layer markedly promotes ion penetration and results in a significant improvement in performance, with the switch time reduced from several seconds to nearly 100 ms and the transconductance increased by an order of magnitude. The high-performance OECTs fabricated by this method show promising applications in high-performance neuromorphic devices and ECG recording in advancing the field of electrochemical transistors.
期刊介绍:
The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.