{"title":"模拟不同接种量的胡萝卜泥在不同温度下储存时沙门氏菌的生长行为","authors":"Basri Omac","doi":"10.1111/jfs.13150","DOIUrl":null,"url":null,"abstract":"<p>The consumption of fresh and fresh-cut fruits and vegetables, such as carrots, has increased for the last decades for a healthy life and an adequate diet, but concerns regarding the microbial safety of them have been raised. The present study was conducted to develop predictive models for <i>Salmonella</i> spp. in grated carrots. The results showed that <i>Salmonella</i> spp. did not display growth at 5°C, but it grew in grated carrots at other temperatures (10, 15, 20, 25, and 37°C) for both inoculum levels. Also, the inoculum levels affected the growth of this pathogen in grated carrots when the storage temperatures ranged from 15 to 25°C. The theoretical minimum temperatures calculated using the Huang model were 3.48 and 5.79°C for inoculum levels of 10<sup>1</sup> and 10<sup>2</sup> CFU/g, respectively. The primary and secondary models performed well in terms of agreement between experimental and estimated values. Furthermore, compared to the Ratkowsky model, the theoretical minimum temperature was given a more reasonable value using the Huang model. The models developed in the present study will be a useful input for future quantitative microbial risk assessment to appraise the proliferation of <i>Salmonella</i> spp. in grated carrots throughout the production process, storage, and distribution.</p>","PeriodicalId":15814,"journal":{"name":"Journal of Food Safety","volume":"44 4","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling the growth behavior of Salmonella spp. in grated carrots inoculated with different inoculum levels stored at various temperatures\",\"authors\":\"Basri Omac\",\"doi\":\"10.1111/jfs.13150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The consumption of fresh and fresh-cut fruits and vegetables, such as carrots, has increased for the last decades for a healthy life and an adequate diet, but concerns regarding the microbial safety of them have been raised. The present study was conducted to develop predictive models for <i>Salmonella</i> spp. in grated carrots. The results showed that <i>Salmonella</i> spp. did not display growth at 5°C, but it grew in grated carrots at other temperatures (10, 15, 20, 25, and 37°C) for both inoculum levels. Also, the inoculum levels affected the growth of this pathogen in grated carrots when the storage temperatures ranged from 15 to 25°C. The theoretical minimum temperatures calculated using the Huang model were 3.48 and 5.79°C for inoculum levels of 10<sup>1</sup> and 10<sup>2</sup> CFU/g, respectively. The primary and secondary models performed well in terms of agreement between experimental and estimated values. Furthermore, compared to the Ratkowsky model, the theoretical minimum temperature was given a more reasonable value using the Huang model. The models developed in the present study will be a useful input for future quantitative microbial risk assessment to appraise the proliferation of <i>Salmonella</i> spp. in grated carrots throughout the production process, storage, and distribution.</p>\",\"PeriodicalId\":15814,\"journal\":{\"name\":\"Journal of Food Safety\",\"volume\":\"44 4\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Food Safety\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jfs.13150\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Safety","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jfs.13150","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Modeling the growth behavior of Salmonella spp. in grated carrots inoculated with different inoculum levels stored at various temperatures
The consumption of fresh and fresh-cut fruits and vegetables, such as carrots, has increased for the last decades for a healthy life and an adequate diet, but concerns regarding the microbial safety of them have been raised. The present study was conducted to develop predictive models for Salmonella spp. in grated carrots. The results showed that Salmonella spp. did not display growth at 5°C, but it grew in grated carrots at other temperatures (10, 15, 20, 25, and 37°C) for both inoculum levels. Also, the inoculum levels affected the growth of this pathogen in grated carrots when the storage temperatures ranged from 15 to 25°C. The theoretical minimum temperatures calculated using the Huang model were 3.48 and 5.79°C for inoculum levels of 101 and 102 CFU/g, respectively. The primary and secondary models performed well in terms of agreement between experimental and estimated values. Furthermore, compared to the Ratkowsky model, the theoretical minimum temperature was given a more reasonable value using the Huang model. The models developed in the present study will be a useful input for future quantitative microbial risk assessment to appraise the proliferation of Salmonella spp. in grated carrots throughout the production process, storage, and distribution.
期刊介绍:
The Journal of Food Safety emphasizes mechanistic studies involving inhibition, injury, and metabolism of food poisoning microorganisms, as well as the regulation of growth and toxin production in both model systems and complex food substrates. It also focuses on pathogens which cause food-borne illness, helping readers understand the factors affecting the initial detection of parasites, their development, transmission, and methods of control and destruction.