{"title":"通过数据验证的反应-扩散模型分析中国梅毒疾病传播的空间异质性。","authors":"Peng Wu , Xiunan Wang , Hao Wang","doi":"10.1016/j.mbs.2024.109243","DOIUrl":null,"url":null,"abstract":"<div><p>Based on the distinctive spatial diffusion characteristics observed in syphilis transmission patterns, this paper introduces a novel reaction–diffusion model for syphilis disease dynamics, incorporating general incidence functions within a heterogeneous environment. We derive the basic reproduction number essential for threshold dynamics and investigate the uniform persistence of the model. We validate the model and estimate its parameters by employing the multi-objective Markov Chain Monte Carlo (MCMC) method, using real syphilis data from the years 2004 to 2018 in China. Furthermore, we explore the impact of spatial heterogeneity and intervention measures on syphilis transmission. Our findings reveal several key insights: (1) In addition to the original high-incidence areas of syphilis, Xinjiang, Guizhou, Hunan and Northeast China have also emerged as high-incidence regions for syphilis in China. (2) The latent syphilis cases represent the highest proportion of newly reported cases, highlighting the critical importance of considering their role in transmission dynamics to avoid underestimation of syphilis outbreaks. (3) Neglecting spatial heterogeneity results in an underestimation of disease prevalence and the number of syphilis-infected individuals, undermining effective disease prevention and control strategies. (4) The initial conditions have minimal impact on the long-term spatial distribution of syphilis-infected individuals in scenarios of varying diffusion rates. This study underscores the significance of spatial dynamics and intervention measures in assessing and managing syphilis transmission, which offers insights for public health policymakers.</p></div>","PeriodicalId":51119,"journal":{"name":"Mathematical Biosciences","volume":"375 ","pages":"Article 109243"},"PeriodicalIF":1.9000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0025556424001032/pdfft?md5=dad3ae68a68d500c670b231c1791a8f6&pid=1-s2.0-S0025556424001032-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Spatial heterogeneity analysis for the transmission of syphilis disease in China via a data-validated reaction–diffusion model\",\"authors\":\"Peng Wu , Xiunan Wang , Hao Wang\",\"doi\":\"10.1016/j.mbs.2024.109243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Based on the distinctive spatial diffusion characteristics observed in syphilis transmission patterns, this paper introduces a novel reaction–diffusion model for syphilis disease dynamics, incorporating general incidence functions within a heterogeneous environment. We derive the basic reproduction number essential for threshold dynamics and investigate the uniform persistence of the model. We validate the model and estimate its parameters by employing the multi-objective Markov Chain Monte Carlo (MCMC) method, using real syphilis data from the years 2004 to 2018 in China. Furthermore, we explore the impact of spatial heterogeneity and intervention measures on syphilis transmission. Our findings reveal several key insights: (1) In addition to the original high-incidence areas of syphilis, Xinjiang, Guizhou, Hunan and Northeast China have also emerged as high-incidence regions for syphilis in China. (2) The latent syphilis cases represent the highest proportion of newly reported cases, highlighting the critical importance of considering their role in transmission dynamics to avoid underestimation of syphilis outbreaks. (3) Neglecting spatial heterogeneity results in an underestimation of disease prevalence and the number of syphilis-infected individuals, undermining effective disease prevention and control strategies. (4) The initial conditions have minimal impact on the long-term spatial distribution of syphilis-infected individuals in scenarios of varying diffusion rates. This study underscores the significance of spatial dynamics and intervention measures in assessing and managing syphilis transmission, which offers insights for public health policymakers.</p></div>\",\"PeriodicalId\":51119,\"journal\":{\"name\":\"Mathematical Biosciences\",\"volume\":\"375 \",\"pages\":\"Article 109243\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0025556424001032/pdfft?md5=dad3ae68a68d500c670b231c1791a8f6&pid=1-s2.0-S0025556424001032-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Biosciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0025556424001032\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025556424001032","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Spatial heterogeneity analysis for the transmission of syphilis disease in China via a data-validated reaction–diffusion model
Based on the distinctive spatial diffusion characteristics observed in syphilis transmission patterns, this paper introduces a novel reaction–diffusion model for syphilis disease dynamics, incorporating general incidence functions within a heterogeneous environment. We derive the basic reproduction number essential for threshold dynamics and investigate the uniform persistence of the model. We validate the model and estimate its parameters by employing the multi-objective Markov Chain Monte Carlo (MCMC) method, using real syphilis data from the years 2004 to 2018 in China. Furthermore, we explore the impact of spatial heterogeneity and intervention measures on syphilis transmission. Our findings reveal several key insights: (1) In addition to the original high-incidence areas of syphilis, Xinjiang, Guizhou, Hunan and Northeast China have also emerged as high-incidence regions for syphilis in China. (2) The latent syphilis cases represent the highest proportion of newly reported cases, highlighting the critical importance of considering their role in transmission dynamics to avoid underestimation of syphilis outbreaks. (3) Neglecting spatial heterogeneity results in an underestimation of disease prevalence and the number of syphilis-infected individuals, undermining effective disease prevention and control strategies. (4) The initial conditions have minimal impact on the long-term spatial distribution of syphilis-infected individuals in scenarios of varying diffusion rates. This study underscores the significance of spatial dynamics and intervention measures in assessing and managing syphilis transmission, which offers insights for public health policymakers.
期刊介绍:
Mathematical Biosciences publishes work providing new concepts or new understanding of biological systems using mathematical models, or methodological articles likely to find application to multiple biological systems. Papers are expected to present a major research finding of broad significance for the biological sciences, or mathematical biology. Mathematical Biosciences welcomes original research articles, letters, reviews and perspectives.