{"title":"在增强现实环境中与虚拟物体互动时上肢肌肉所承受的物理负荷。","authors":"Chae Heon Lim , Min Chul Cha , Seul Chan Lee","doi":"10.1016/j.apergo.2024.104340","DOIUrl":null,"url":null,"abstract":"<div><p>Augmented reality (AR) environments are emerging as prominent user interfaces and gathering significant attention. However, the associated physical strain on the users presents a considerable challenge. Within this background, this study explores the impact of movement distance (MD) and target-to-user distance (TTU) on the physical load during drag-and-drop (DND) tasks in an AR environment. To address this objective, a user experiment was conducted utilizing a 5× 5 within-subject design with MD (16, 32, 48, 64, and 80 cm) and TTU (40, 80, 120, 160, and 200 cm) as the variables. Physical load was assessed using normalized electromyography (NEMG) (%MVC) indicators of the upper extremity muscles and the physical item of NASA-Task load index (TLX). The results revealed significant variations in the physical load based on MD and TTU. Specifically, both the NEMG and subjective physical workload values increased with increasing MD. Moreover, NEMG increased with decreasing TTU, whereas the subjective physical workload scores increased with increasing TTU. Interaction effects of MD and TTU on NEMG were also significantly observed. These findings suggest that considering the MD and TTU when developing content for interacting with AR objects in AR environments could potentially alleviate user load.</p></div>","PeriodicalId":55502,"journal":{"name":"Applied Ergonomics","volume":"120 ","pages":"Article 104340"},"PeriodicalIF":3.1000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physical loads on upper extremity muscles while interacting with virtual objects in an augmented reality context\",\"authors\":\"Chae Heon Lim , Min Chul Cha , Seul Chan Lee\",\"doi\":\"10.1016/j.apergo.2024.104340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Augmented reality (AR) environments are emerging as prominent user interfaces and gathering significant attention. However, the associated physical strain on the users presents a considerable challenge. Within this background, this study explores the impact of movement distance (MD) and target-to-user distance (TTU) on the physical load during drag-and-drop (DND) tasks in an AR environment. To address this objective, a user experiment was conducted utilizing a 5× 5 within-subject design with MD (16, 32, 48, 64, and 80 cm) and TTU (40, 80, 120, 160, and 200 cm) as the variables. Physical load was assessed using normalized electromyography (NEMG) (%MVC) indicators of the upper extremity muscles and the physical item of NASA-Task load index (TLX). The results revealed significant variations in the physical load based on MD and TTU. Specifically, both the NEMG and subjective physical workload values increased with increasing MD. Moreover, NEMG increased with decreasing TTU, whereas the subjective physical workload scores increased with increasing TTU. Interaction effects of MD and TTU on NEMG were also significantly observed. These findings suggest that considering the MD and TTU when developing content for interacting with AR objects in AR environments could potentially alleviate user load.</p></div>\",\"PeriodicalId\":55502,\"journal\":{\"name\":\"Applied Ergonomics\",\"volume\":\"120 \",\"pages\":\"Article 104340\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Ergonomics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0003687024001170\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Ergonomics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003687024001170","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Physical loads on upper extremity muscles while interacting with virtual objects in an augmented reality context
Augmented reality (AR) environments are emerging as prominent user interfaces and gathering significant attention. However, the associated physical strain on the users presents a considerable challenge. Within this background, this study explores the impact of movement distance (MD) and target-to-user distance (TTU) on the physical load during drag-and-drop (DND) tasks in an AR environment. To address this objective, a user experiment was conducted utilizing a 5× 5 within-subject design with MD (16, 32, 48, 64, and 80 cm) and TTU (40, 80, 120, 160, and 200 cm) as the variables. Physical load was assessed using normalized electromyography (NEMG) (%MVC) indicators of the upper extremity muscles and the physical item of NASA-Task load index (TLX). The results revealed significant variations in the physical load based on MD and TTU. Specifically, both the NEMG and subjective physical workload values increased with increasing MD. Moreover, NEMG increased with decreasing TTU, whereas the subjective physical workload scores increased with increasing TTU. Interaction effects of MD and TTU on NEMG were also significantly observed. These findings suggest that considering the MD and TTU when developing content for interacting with AR objects in AR environments could potentially alleviate user load.
期刊介绍:
Applied Ergonomics is aimed at ergonomists and all those interested in applying ergonomics/human factors in the design, planning and management of technical and social systems at work or leisure. Readership is truly international with subscribers in over 50 countries. Professionals for whom Applied Ergonomics is of interest include: ergonomists, designers, industrial engineers, health and safety specialists, systems engineers, design engineers, organizational psychologists, occupational health specialists and human-computer interaction specialists.