Chathranee Jayathilaka, Robyn Araujo, Lan Nguyen, Mark Flegg
{"title":"两错不成全:假定抑制剂起着反向激活剂的作用。","authors":"Chathranee Jayathilaka, Robyn Araujo, Lan Nguyen, Mark Flegg","doi":"10.1007/s00285-024-02118-4","DOIUrl":null,"url":null,"abstract":"<p><p>Models of biochemical networks are often large intractable sets of differential equations. To make sense of the complexity, relationships between genes/proteins are presented as connected graphs, the edges of which are drawn to indicate activation or inhibition relationships. These diagrams are useful for drawing qualitative conclusions in many cases by the identifying recurring of topological motifs, for example positive and negative feedback loops. These topological features are usually classified under the presumption that activation and inhibition are inverse relationships. For example, inhibition of an inhibitor is often classified the same as activation of an activator within a motif classification, effectively treating them as equivalent. Whilst in many contexts this may not lead to catastrophic errors, drawing conclusions about the behavior of motifs, pathways or networks from these broad classes of topological feature without adequate mathematical descriptions can lead to obverse outcomes. We investigate the extent to which a biochemical pathway/network will behave quantitatively dissimilar to pathway/ networks with similar typologies formed by swapping inhibitors as the inverse of activators. The purpose of the study is to determine under what circumstances rudimentary qualitative assessment of network structure can provide reliable conclusions as to the quantitative behaviour of the network. Whilst there are others, We focus on two main mathematical qualities which may cause a divergence in the behaviour of two pathways/networks which would otherwise be classified as similar; (i) a modelling feature we label 'bias' and (ii) the precise positioning of activators and inhibitors within simple pathways/motifs.</p>","PeriodicalId":50148,"journal":{"name":"Journal of Mathematical Biology","volume":"89 2","pages":"26"},"PeriodicalIF":2.2000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11226533/pdf/","citationCount":"0","resultStr":"{\"title\":\"Two wrongs do not make a right: the assumption that an inhibitor acts as an inverse activator.\",\"authors\":\"Chathranee Jayathilaka, Robyn Araujo, Lan Nguyen, Mark Flegg\",\"doi\":\"10.1007/s00285-024-02118-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Models of biochemical networks are often large intractable sets of differential equations. To make sense of the complexity, relationships between genes/proteins are presented as connected graphs, the edges of which are drawn to indicate activation or inhibition relationships. These diagrams are useful for drawing qualitative conclusions in many cases by the identifying recurring of topological motifs, for example positive and negative feedback loops. These topological features are usually classified under the presumption that activation and inhibition are inverse relationships. For example, inhibition of an inhibitor is often classified the same as activation of an activator within a motif classification, effectively treating them as equivalent. Whilst in many contexts this may not lead to catastrophic errors, drawing conclusions about the behavior of motifs, pathways or networks from these broad classes of topological feature without adequate mathematical descriptions can lead to obverse outcomes. We investigate the extent to which a biochemical pathway/network will behave quantitatively dissimilar to pathway/ networks with similar typologies formed by swapping inhibitors as the inverse of activators. The purpose of the study is to determine under what circumstances rudimentary qualitative assessment of network structure can provide reliable conclusions as to the quantitative behaviour of the network. Whilst there are others, We focus on two main mathematical qualities which may cause a divergence in the behaviour of two pathways/networks which would otherwise be classified as similar; (i) a modelling feature we label 'bias' and (ii) the precise positioning of activators and inhibitors within simple pathways/motifs.</p>\",\"PeriodicalId\":50148,\"journal\":{\"name\":\"Journal of Mathematical Biology\",\"volume\":\"89 2\",\"pages\":\"26\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11226533/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Biology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00285-024-02118-4\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00285-024-02118-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Two wrongs do not make a right: the assumption that an inhibitor acts as an inverse activator.
Models of biochemical networks are often large intractable sets of differential equations. To make sense of the complexity, relationships between genes/proteins are presented as connected graphs, the edges of which are drawn to indicate activation or inhibition relationships. These diagrams are useful for drawing qualitative conclusions in many cases by the identifying recurring of topological motifs, for example positive and negative feedback loops. These topological features are usually classified under the presumption that activation and inhibition are inverse relationships. For example, inhibition of an inhibitor is often classified the same as activation of an activator within a motif classification, effectively treating them as equivalent. Whilst in many contexts this may not lead to catastrophic errors, drawing conclusions about the behavior of motifs, pathways or networks from these broad classes of topological feature without adequate mathematical descriptions can lead to obverse outcomes. We investigate the extent to which a biochemical pathway/network will behave quantitatively dissimilar to pathway/ networks with similar typologies formed by swapping inhibitors as the inverse of activators. The purpose of the study is to determine under what circumstances rudimentary qualitative assessment of network structure can provide reliable conclusions as to the quantitative behaviour of the network. Whilst there are others, We focus on two main mathematical qualities which may cause a divergence in the behaviour of two pathways/networks which would otherwise be classified as similar; (i) a modelling feature we label 'bias' and (ii) the precise positioning of activators and inhibitors within simple pathways/motifs.
期刊介绍:
The Journal of Mathematical Biology focuses on mathematical biology - work that uses mathematical approaches to gain biological understanding or explain biological phenomena.
Areas of biology covered include, but are not restricted to, cell biology, physiology, development, neurobiology, genetics and population genetics, population biology, ecology, behavioural biology, evolution, epidemiology, immunology, molecular biology, biofluids, DNA and protein structure and function. All mathematical approaches including computational and visualization approaches are appropriate.