Yuwei Liu, Litao Zhao, Jie Bao, Jian Hou, Zhaozhao Jing, Songlu Liu, Xuanhao Li, Zibing Cao, Boyu Yang, Junkang Shen, Ji Zhang, Libiao Ji, Zhen Kang, Chunhong Hu, Liang Wang, Jiangang Liu
{"title":"利用磁共振成像放射组学,无创识别前列腺癌主动监测的候选者。","authors":"Yuwei Liu, Litao Zhao, Jie Bao, Jian Hou, Zhaozhao Jing, Songlu Liu, Xuanhao Li, Zibing Cao, Boyu Yang, Junkang Shen, Ji Zhang, Libiao Ji, Zhen Kang, Chunhong Hu, Liang Wang, Jiangang Liu","doi":"10.1186/s42492-024-00167-6","DOIUrl":null,"url":null,"abstract":"<p><p>Active surveillance (AS) is the primary strategy for managing patients with low or favorable-intermediate risk prostate cancer (PCa). Identifying patients who may benefit from AS relies on unpleasant prostate biopsies, which entail the risk of bleeding and infection. In the current study, we aimed to develop a radiomics model based on prostate magnetic resonance images to identify AS candidates non-invasively. A total of 956 PCa patients with complete biopsy reports from six hospitals were included in the current multicenter retrospective study. The National Comprehensive Cancer Network (NCCN) guidelines were used as reference standards to determine the AS candidacy. To discriminate between AS and non-AS candidates, five radiomics models (i.e., eXtreme Gradient Boosting (XGBoost) AS classifier (XGB-AS), logistic regression (LR) AS classifier, random forest (RF) AS classifier, adaptive boosting (AdaBoost) AS classifier, and decision tree (DT) AS classifier) were developed and externally validated using a three-fold cross-center validation based on five classifiers: XGBoost, LR, RF, AdaBoost, and DT. Area under the receiver operating characteristic curve (AUC), accuracy (ACC), sensitivity (SEN), and specificity (SPE) were calculated to evaluate the performance of these models. XGB-AS exhibited an average of AUC of 0.803, ACC of 0.693, SEN of 0.668, and SPE of 0.841, showing a better comprehensive performance than those of the other included radiomic models. Additionally, the XGB-AS model also presented a promising performance for identifying AS candidates from the intermediate-risk cases and the ambiguous cases with diagnostic discordance between the NCCN guidelines and the Prostate Imaging-Reporting and Data System assessment. These results suggest that the XGB-AS model has the potential to help identify patients who are suitable for AS and allow non-invasive monitoring of patients on AS, thereby reducing the number of annual biopsies and the associated risks of bleeding and infection.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11226574/pdf/","citationCount":"0","resultStr":"{\"title\":\"Non-invasively identifying candidates of active surveillance for prostate cancer using magnetic resonance imaging radiomics.\",\"authors\":\"Yuwei Liu, Litao Zhao, Jie Bao, Jian Hou, Zhaozhao Jing, Songlu Liu, Xuanhao Li, Zibing Cao, Boyu Yang, Junkang Shen, Ji Zhang, Libiao Ji, Zhen Kang, Chunhong Hu, Liang Wang, Jiangang Liu\",\"doi\":\"10.1186/s42492-024-00167-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Active surveillance (AS) is the primary strategy for managing patients with low or favorable-intermediate risk prostate cancer (PCa). Identifying patients who may benefit from AS relies on unpleasant prostate biopsies, which entail the risk of bleeding and infection. In the current study, we aimed to develop a radiomics model based on prostate magnetic resonance images to identify AS candidates non-invasively. A total of 956 PCa patients with complete biopsy reports from six hospitals were included in the current multicenter retrospective study. The National Comprehensive Cancer Network (NCCN) guidelines were used as reference standards to determine the AS candidacy. To discriminate between AS and non-AS candidates, five radiomics models (i.e., eXtreme Gradient Boosting (XGBoost) AS classifier (XGB-AS), logistic regression (LR) AS classifier, random forest (RF) AS classifier, adaptive boosting (AdaBoost) AS classifier, and decision tree (DT) AS classifier) were developed and externally validated using a three-fold cross-center validation based on five classifiers: XGBoost, LR, RF, AdaBoost, and DT. Area under the receiver operating characteristic curve (AUC), accuracy (ACC), sensitivity (SEN), and specificity (SPE) were calculated to evaluate the performance of these models. XGB-AS exhibited an average of AUC of 0.803, ACC of 0.693, SEN of 0.668, and SPE of 0.841, showing a better comprehensive performance than those of the other included radiomic models. Additionally, the XGB-AS model also presented a promising performance for identifying AS candidates from the intermediate-risk cases and the ambiguous cases with diagnostic discordance between the NCCN guidelines and the Prostate Imaging-Reporting and Data System assessment. These results suggest that the XGB-AS model has the potential to help identify patients who are suitable for AS and allow non-invasive monitoring of patients on AS, thereby reducing the number of annual biopsies and the associated risks of bleeding and infection.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11226574/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1186/s42492-024-00167-6\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1186/s42492-024-00167-6","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Non-invasively identifying candidates of active surveillance for prostate cancer using magnetic resonance imaging radiomics.
Active surveillance (AS) is the primary strategy for managing patients with low or favorable-intermediate risk prostate cancer (PCa). Identifying patients who may benefit from AS relies on unpleasant prostate biopsies, which entail the risk of bleeding and infection. In the current study, we aimed to develop a radiomics model based on prostate magnetic resonance images to identify AS candidates non-invasively. A total of 956 PCa patients with complete biopsy reports from six hospitals were included in the current multicenter retrospective study. The National Comprehensive Cancer Network (NCCN) guidelines were used as reference standards to determine the AS candidacy. To discriminate between AS and non-AS candidates, five radiomics models (i.e., eXtreme Gradient Boosting (XGBoost) AS classifier (XGB-AS), logistic regression (LR) AS classifier, random forest (RF) AS classifier, adaptive boosting (AdaBoost) AS classifier, and decision tree (DT) AS classifier) were developed and externally validated using a three-fold cross-center validation based on five classifiers: XGBoost, LR, RF, AdaBoost, and DT. Area under the receiver operating characteristic curve (AUC), accuracy (ACC), sensitivity (SEN), and specificity (SPE) were calculated to evaluate the performance of these models. XGB-AS exhibited an average of AUC of 0.803, ACC of 0.693, SEN of 0.668, and SPE of 0.841, showing a better comprehensive performance than those of the other included radiomic models. Additionally, the XGB-AS model also presented a promising performance for identifying AS candidates from the intermediate-risk cases and the ambiguous cases with diagnostic discordance between the NCCN guidelines and the Prostate Imaging-Reporting and Data System assessment. These results suggest that the XGB-AS model has the potential to help identify patients who are suitable for AS and allow non-invasive monitoring of patients on AS, thereby reducing the number of annual biopsies and the associated risks of bleeding and infection.