{"title":"circ_0003928/miR-31-5p/MAPK6级联影响高糖诱导的HK-2细胞炎症反应、纤维化和氧化应激。","authors":"","doi":"10.1016/j.trim.2024.102078","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Diabetic nephropathy (DN) is a severe diabetic complication disorder. Circular RNAs (circRNAs) actively participate in DN pathogenesis. In this report, we sought to define a new mechanism of circ_0003928 in regulating high glucose (HG)-induced HK-2 cells.</p></div><div><h3>Methods</h3><p>To construct a DN cell model, we treated HK-2 cells with HG. Cell viability and apoptosis were detected by CCK-8 and flow cytometry, respectively. The inflammatory cytokines were quantified by ELISA. Protein analysis was performed by immunoblotting, and mRNA expression was detected by quantitative PCR. The circ_0003928/miR-31-5p and miR-31-5p/MAPK6 relationships were validated by RNA pull-down and luciferase assays.</p></div><div><h3>Results</h3><p>HG promoted HK-2 cell apoptosis, fibrosis and oxidative stress. Circ_0003928 and MAPK6 levels were enhanced and miR-31-5p level was decreased in HK-2 cells after HG treatment. Circ_0003928 disruption promoted cell growth and inhibited apoptosis, inflammatory response, fibrosis and oxidative stress in HG-induced HK-2 cells. Circ_0003928 targeted miR-31-5p, and MAPK6 was a target of miR-31-5p. Circ_0003928 regulated MAPK6 expression through miR-31-5p. The functions of circ_0003928 disruption in HG-induced HK-2 cells were reversed by miR-31-5p downregulation or MAPK6 upregulation.</p></div><div><h3>Conclusion</h3><p>Circ_0003928 exerts regulatory impacts on HG-induced apoptosis, inflammation, fibrosis and oxidative stress in human HK-2 cells by the miR-31-5p/MAPK6 axis.</p></div>","PeriodicalId":23304,"journal":{"name":"Transplant immunology","volume":"86 ","pages":"Article 102078"},"PeriodicalIF":1.6000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The circ_0003928/miR-31-5p/MAPK6 cascade affects high glucose-induced inflammatory response, fibrosis and oxidative stress in HK-2 cells\",\"authors\":\"\",\"doi\":\"10.1016/j.trim.2024.102078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Diabetic nephropathy (DN) is a severe diabetic complication disorder. Circular RNAs (circRNAs) actively participate in DN pathogenesis. In this report, we sought to define a new mechanism of circ_0003928 in regulating high glucose (HG)-induced HK-2 cells.</p></div><div><h3>Methods</h3><p>To construct a DN cell model, we treated HK-2 cells with HG. Cell viability and apoptosis were detected by CCK-8 and flow cytometry, respectively. The inflammatory cytokines were quantified by ELISA. Protein analysis was performed by immunoblotting, and mRNA expression was detected by quantitative PCR. The circ_0003928/miR-31-5p and miR-31-5p/MAPK6 relationships were validated by RNA pull-down and luciferase assays.</p></div><div><h3>Results</h3><p>HG promoted HK-2 cell apoptosis, fibrosis and oxidative stress. Circ_0003928 and MAPK6 levels were enhanced and miR-31-5p level was decreased in HK-2 cells after HG treatment. Circ_0003928 disruption promoted cell growth and inhibited apoptosis, inflammatory response, fibrosis and oxidative stress in HG-induced HK-2 cells. Circ_0003928 targeted miR-31-5p, and MAPK6 was a target of miR-31-5p. Circ_0003928 regulated MAPK6 expression through miR-31-5p. The functions of circ_0003928 disruption in HG-induced HK-2 cells were reversed by miR-31-5p downregulation or MAPK6 upregulation.</p></div><div><h3>Conclusion</h3><p>Circ_0003928 exerts regulatory impacts on HG-induced apoptosis, inflammation, fibrosis and oxidative stress in human HK-2 cells by the miR-31-5p/MAPK6 axis.</p></div>\",\"PeriodicalId\":23304,\"journal\":{\"name\":\"Transplant immunology\",\"volume\":\"86 \",\"pages\":\"Article 102078\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transplant immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0966327424000947\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transplant immunology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0966327424000947","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
The circ_0003928/miR-31-5p/MAPK6 cascade affects high glucose-induced inflammatory response, fibrosis and oxidative stress in HK-2 cells
Background
Diabetic nephropathy (DN) is a severe diabetic complication disorder. Circular RNAs (circRNAs) actively participate in DN pathogenesis. In this report, we sought to define a new mechanism of circ_0003928 in regulating high glucose (HG)-induced HK-2 cells.
Methods
To construct a DN cell model, we treated HK-2 cells with HG. Cell viability and apoptosis were detected by CCK-8 and flow cytometry, respectively. The inflammatory cytokines were quantified by ELISA. Protein analysis was performed by immunoblotting, and mRNA expression was detected by quantitative PCR. The circ_0003928/miR-31-5p and miR-31-5p/MAPK6 relationships were validated by RNA pull-down and luciferase assays.
Results
HG promoted HK-2 cell apoptosis, fibrosis and oxidative stress. Circ_0003928 and MAPK6 levels were enhanced and miR-31-5p level was decreased in HK-2 cells after HG treatment. Circ_0003928 disruption promoted cell growth and inhibited apoptosis, inflammatory response, fibrosis and oxidative stress in HG-induced HK-2 cells. Circ_0003928 targeted miR-31-5p, and MAPK6 was a target of miR-31-5p. Circ_0003928 regulated MAPK6 expression through miR-31-5p. The functions of circ_0003928 disruption in HG-induced HK-2 cells were reversed by miR-31-5p downregulation or MAPK6 upregulation.
Conclusion
Circ_0003928 exerts regulatory impacts on HG-induced apoptosis, inflammation, fibrosis and oxidative stress in human HK-2 cells by the miR-31-5p/MAPK6 axis.
期刊介绍:
Transplant Immunology will publish up-to-date information on all aspects of the broad field it encompasses. The journal will be directed at (basic) scientists, tissue typers, transplant physicians and surgeons, and research and data on all immunological aspects of organ-, tissue- and (haematopoietic) stem cell transplantation are of potential interest to the readers of Transplant Immunology. Original papers, Review articles and Hypotheses will be considered for publication and submitted manuscripts will be rapidly peer-reviewed and published. They will be judged on the basis of scientific merit, originality, timeliness and quality.