鉴定和分析水稻中九个新的 flo2 等位基因突变体。

IF 4 3区 生物学 Q1 PLANT SCIENCES
Lingshang Lin , Jiajing Qiu , Long Zhang , Cunxu Wei
{"title":"鉴定和分析水稻中九个新的 flo2 等位基因突变体。","authors":"Lingshang Lin ,&nbsp;Jiajing Qiu ,&nbsp;Long Zhang ,&nbsp;Cunxu Wei","doi":"10.1016/j.jplph.2024.154300","DOIUrl":null,"url":null,"abstract":"<div><p><em>FLO2</em> is involved in grain development and storage substance synthesis in rice, and therefore can regulate grain size and quality. In this study, we identified 4 new <em>flo2</em> allelic mutants with nonsense and frameshift mutation in the exon of 6, 10, 11 and 21 and 5 new <em>flo2</em> allelic mutants with alternative splicing and frameshift mutation at the splicing site of intron 13, 14, 16 and 17. Compared with wild-type rice, the outer endosperm of <em>flo2</em> mutants was transparent, and the inner endosperm was floury. Different mutation sites and types of <em>FLO2</em> significantly decreased kernel width, thickness and weight to some extent. The contents of storage protein, starch, amylose and amylopectin showed significant decrease at different levels among 9 <em>flo2</em> mutants. The expressions of most storage protein synthesis genes and starch synthesis-related genes were significantly down-regulated, and exhibited different ranges of variation among different <em>flo2</em> mutants. This study could add helpful information for the roles of <em>flo2</em> alleles in rice quality regulation and provide abundant germplasm resources for rice quality breeding.</p></div>","PeriodicalId":16808,"journal":{"name":"Journal of plant physiology","volume":"301 ","pages":"Article 154300"},"PeriodicalIF":4.0000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification and analysis of nine new flo2 allelic mutants in rice\",\"authors\":\"Lingshang Lin ,&nbsp;Jiajing Qiu ,&nbsp;Long Zhang ,&nbsp;Cunxu Wei\",\"doi\":\"10.1016/j.jplph.2024.154300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><em>FLO2</em> is involved in grain development and storage substance synthesis in rice, and therefore can regulate grain size and quality. In this study, we identified 4 new <em>flo2</em> allelic mutants with nonsense and frameshift mutation in the exon of 6, 10, 11 and 21 and 5 new <em>flo2</em> allelic mutants with alternative splicing and frameshift mutation at the splicing site of intron 13, 14, 16 and 17. Compared with wild-type rice, the outer endosperm of <em>flo2</em> mutants was transparent, and the inner endosperm was floury. Different mutation sites and types of <em>FLO2</em> significantly decreased kernel width, thickness and weight to some extent. The contents of storage protein, starch, amylose and amylopectin showed significant decrease at different levels among 9 <em>flo2</em> mutants. The expressions of most storage protein synthesis genes and starch synthesis-related genes were significantly down-regulated, and exhibited different ranges of variation among different <em>flo2</em> mutants. This study could add helpful information for the roles of <em>flo2</em> alleles in rice quality regulation and provide abundant germplasm resources for rice quality breeding.</p></div>\",\"PeriodicalId\":16808,\"journal\":{\"name\":\"Journal of plant physiology\",\"volume\":\"301 \",\"pages\":\"Article 154300\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of plant physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0176161724001317\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of plant physiology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0176161724001317","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

FLO2参与水稻籽粒的发育和贮藏物质的合成,因此可调控籽粒的大小和品质。本研究发现了4个新的flo2等位突变体,它们分别在6、10、11和21号外显子上发生了无义突变和缺框突变,以及5个新的flo2等位突变体,它们分别在13、14、16和17号内含子的剪接位点上发生了替代剪接和缺框突变。与野生型水稻相比,flo2 突变体的外胚乳透明,内胚乳呈绒毛状。不同突变位点和类型的FLO2在一定程度上显著降低了稻粒的宽度、厚度和重量。9个flo2突变体的贮藏蛋白、淀粉、直链淀粉和支链淀粉含量均有不同程度的显著下降。大多数贮藏蛋白合成基因和淀粉合成相关基因的表达明显下调,并在不同的flo2突变体中表现出不同的变化范围。该研究可为flo2等位基因在水稻品质调控中的作用提供有用信息,并为水稻品质育种提供丰富的种质资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification and analysis of nine new flo2 allelic mutants in rice

FLO2 is involved in grain development and storage substance synthesis in rice, and therefore can regulate grain size and quality. In this study, we identified 4 new flo2 allelic mutants with nonsense and frameshift mutation in the exon of 6, 10, 11 and 21 and 5 new flo2 allelic mutants with alternative splicing and frameshift mutation at the splicing site of intron 13, 14, 16 and 17. Compared with wild-type rice, the outer endosperm of flo2 mutants was transparent, and the inner endosperm was floury. Different mutation sites and types of FLO2 significantly decreased kernel width, thickness and weight to some extent. The contents of storage protein, starch, amylose and amylopectin showed significant decrease at different levels among 9 flo2 mutants. The expressions of most storage protein synthesis genes and starch synthesis-related genes were significantly down-regulated, and exhibited different ranges of variation among different flo2 mutants. This study could add helpful information for the roles of flo2 alleles in rice quality regulation and provide abundant germplasm resources for rice quality breeding.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of plant physiology
Journal of plant physiology 生物-植物科学
CiteScore
7.20
自引率
4.70%
发文量
196
审稿时长
32 days
期刊介绍: The Journal of Plant Physiology is a broad-spectrum journal that welcomes high-quality submissions in all major areas of plant physiology, including plant biochemistry, functional biotechnology, computational and synthetic plant biology, growth and development, photosynthesis and respiration, transport and translocation, plant-microbe interactions, biotic and abiotic stress. Studies are welcome at all levels of integration ranging from molecules and cells to organisms and their environments and are expected to use state-of-the-art methodologies. Pure gene expression studies are not within the focus of our journal. To be considered for publication, papers must significantly contribute to the mechanistic understanding of physiological processes, and not be merely descriptive, or confirmatory of previous results. We encourage the submission of papers that explore the physiology of non-model as well as accepted model species and those that bridge basic and applied research. For instance, studies on agricultural plants that show new physiological mechanisms to improve agricultural efficiency are welcome. Studies performed under uncontrolled situations (e.g. field conditions) not providing mechanistic insight will not be considered for publication. The Journal of Plant Physiology publishes several types of articles: Original Research Articles, Reviews, Perspectives Articles, and Short Communications. Reviews and Perspectives will be solicited by the Editors; unsolicited reviews are also welcome but only from authors with a strong track record in the field of the review. Original research papers comprise the majority of published contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信