Yan-Ting Jin , Yang Tan , Zhong-Hua Gan , Yu-Duo Hao , Tian-Yu Wang , Hao Lin , Bo Tang
{"title":"通过多重序列描述符识别人类基因组中的 DNase I 超敏位点。","authors":"Yan-Ting Jin , Yang Tan , Zhong-Hua Gan , Yu-Duo Hao , Tian-Yu Wang , Hao Lin , Bo Tang","doi":"10.1016/j.ymeth.2024.06.012","DOIUrl":null,"url":null,"abstract":"<div><p>DNase I hypersensitive sites (DHSs) are chromatin regions highly sensitive to DNase I enzymes. Studying DHSs is crucial for understanding complex transcriptional regulation mechanisms and localizing <em>cis</em>-regulatory elements (CREs). Numerous studies have indicated that disease-related loci are often enriched in DHSs regions, underscoring the importance of identifying DHSs. Although wet experiments exist for DHSs identification, they are often labor-intensive. Therefore, there is a strong need to develop computational methods for this purpose. In this study, we used experimental data to construct a benchmark dataset. Seven feature extraction methods were employed to capture information about human DHSs. The <em>F</em>-score was applied to filter the features. By comparing the prediction performance of various classification algorithms through five-fold cross-validation, random forest was proposed to perform the final model construction. The model could produce an overall prediction accuracy of 0.859 with an AUC value of 0.837. We hope that this model can assist scholars conducting DNase research in identifying these sites.</p></div>","PeriodicalId":390,"journal":{"name":"Methods","volume":"229 ","pages":"Pages 125-132"},"PeriodicalIF":4.2000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of DNase I hypersensitive sites in the human genome by multiple sequence descriptors\",\"authors\":\"Yan-Ting Jin , Yang Tan , Zhong-Hua Gan , Yu-Duo Hao , Tian-Yu Wang , Hao Lin , Bo Tang\",\"doi\":\"10.1016/j.ymeth.2024.06.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>DNase I hypersensitive sites (DHSs) are chromatin regions highly sensitive to DNase I enzymes. Studying DHSs is crucial for understanding complex transcriptional regulation mechanisms and localizing <em>cis</em>-regulatory elements (CREs). Numerous studies have indicated that disease-related loci are often enriched in DHSs regions, underscoring the importance of identifying DHSs. Although wet experiments exist for DHSs identification, they are often labor-intensive. Therefore, there is a strong need to develop computational methods for this purpose. In this study, we used experimental data to construct a benchmark dataset. Seven feature extraction methods were employed to capture information about human DHSs. The <em>F</em>-score was applied to filter the features. By comparing the prediction performance of various classification algorithms through five-fold cross-validation, random forest was proposed to perform the final model construction. The model could produce an overall prediction accuracy of 0.859 with an AUC value of 0.837. We hope that this model can assist scholars conducting DNase research in identifying these sites.</p></div>\",\"PeriodicalId\":390,\"journal\":{\"name\":\"Methods\",\"volume\":\"229 \",\"pages\":\"Pages 125-132\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1046202324001622\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1046202324001622","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Identification of DNase I hypersensitive sites in the human genome by multiple sequence descriptors
DNase I hypersensitive sites (DHSs) are chromatin regions highly sensitive to DNase I enzymes. Studying DHSs is crucial for understanding complex transcriptional regulation mechanisms and localizing cis-regulatory elements (CREs). Numerous studies have indicated that disease-related loci are often enriched in DHSs regions, underscoring the importance of identifying DHSs. Although wet experiments exist for DHSs identification, they are often labor-intensive. Therefore, there is a strong need to develop computational methods for this purpose. In this study, we used experimental data to construct a benchmark dataset. Seven feature extraction methods were employed to capture information about human DHSs. The F-score was applied to filter the features. By comparing the prediction performance of various classification algorithms through five-fold cross-validation, random forest was proposed to perform the final model construction. The model could produce an overall prediction accuracy of 0.859 with an AUC value of 0.837. We hope that this model can assist scholars conducting DNase research in identifying these sites.
期刊介绍:
Methods focuses on rapidly developing techniques in the experimental biological and medical sciences.
Each topical issue, organized by a guest editor who is an expert in the area covered, consists solely of invited quality articles by specialist authors, many of them reviews. Issues are devoted to specific technical approaches with emphasis on clear detailed descriptions of protocols that allow them to be reproduced easily. The background information provided enables researchers to understand the principles underlying the methods; other helpful sections include comparisons of alternative methods giving the advantages and disadvantages of particular methods, guidance on avoiding potential pitfalls, and suggestions for troubleshooting.