克服多阴离子阴极的动力学限制,实现高性能钠离子电池。

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2024-07-04 DOI:10.1021/acsnano.4c06510
Chunliu Xu, Qiang Fu, Weibo Hua, Zhao Chen, Qinghua Zhang, Ying Bai, Chao Yang, Junmei Zhao* and Yong-Sheng Hu, 
{"title":"克服多阴离子阴极的动力学限制,实现高性能钠离子电池。","authors":"Chunliu Xu,&nbsp;Qiang Fu,&nbsp;Weibo Hua,&nbsp;Zhao Chen,&nbsp;Qinghua Zhang,&nbsp;Ying Bai,&nbsp;Chao Yang,&nbsp;Junmei Zhao* and Yong-Sheng Hu,&nbsp;","doi":"10.1021/acsnano.4c06510","DOIUrl":null,"url":null,"abstract":"<p >Polyanionic cathodes have attracted extensive research interest for Na-ion batteries (NIBs) due to their moderate energy density and desirable cycling stability. However, these compounds suffer from visible capacity fading and significant voltage decay upon the rapid sodium storage process, even if modified through nanoengineering or carbon-coating routes, leading to limited applications in NIBs. Herein, the Na<sub>3</sub>(VOPO<sub>4</sub>)<sub>2</sub>F cathode material with dominantly exposed {001} active facets is demonstrated by a topochemical synthesis route. Owing to the rational geometrical structure design and thereby directly shortening Na diffusion distance, the electrode delivers a reversible capacity of ∼129 mA h g<sup>–1</sup> even at a high rate of 10 C, which is very close to the theoretical capacity of 132 mA h g<sup>–1</sup>, achieving a high energy density of ∼452 W h kg<sup>–1</sup> coupled with a high-power density of 4660 W kg<sup>–1</sup>. When further served as a cathode for nonaqueous, aqueous-based, and solid-state full NIBs, respectively, our designed Na<sub>3</sub>(VOPO<sub>4</sub>)<sub>2</sub>F always enables superior electrochemical performance due to favorable kinetics.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":null,"pages":null},"PeriodicalIF":15.8000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Overcoming Kinetic Limitations of Polyanionic Cathode toward High-Performance Na-Ion Batteries\",\"authors\":\"Chunliu Xu,&nbsp;Qiang Fu,&nbsp;Weibo Hua,&nbsp;Zhao Chen,&nbsp;Qinghua Zhang,&nbsp;Ying Bai,&nbsp;Chao Yang,&nbsp;Junmei Zhao* and Yong-Sheng Hu,&nbsp;\",\"doi\":\"10.1021/acsnano.4c06510\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Polyanionic cathodes have attracted extensive research interest for Na-ion batteries (NIBs) due to their moderate energy density and desirable cycling stability. However, these compounds suffer from visible capacity fading and significant voltage decay upon the rapid sodium storage process, even if modified through nanoengineering or carbon-coating routes, leading to limited applications in NIBs. Herein, the Na<sub>3</sub>(VOPO<sub>4</sub>)<sub>2</sub>F cathode material with dominantly exposed {001} active facets is demonstrated by a topochemical synthesis route. Owing to the rational geometrical structure design and thereby directly shortening Na diffusion distance, the electrode delivers a reversible capacity of ∼129 mA h g<sup>–1</sup> even at a high rate of 10 C, which is very close to the theoretical capacity of 132 mA h g<sup>–1</sup>, achieving a high energy density of ∼452 W h kg<sup>–1</sup> coupled with a high-power density of 4660 W kg<sup>–1</sup>. When further served as a cathode for nonaqueous, aqueous-based, and solid-state full NIBs, respectively, our designed Na<sub>3</sub>(VOPO<sub>4</sub>)<sub>2</sub>F always enables superior electrochemical performance due to favorable kinetics.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.4c06510\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.4c06510","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

聚阴离子阴极具有适中的能量密度和理想的循环稳定性,因此在钠离子电池(NIB)领域引起了广泛的研究兴趣。然而,这些化合物在快速储钠过程中会出现明显的容量衰减和显著的电压衰减,即使通过纳米工程或碳涂层方法对其进行改性也是如此,导致其在 NIB 中的应用受到限制。本文通过拓扑化学合成路线,展示了具有主要暴露{001}活性面的 Na3(VOPO4)2F 阴极材料。由于合理的几何结构设计,从而直接缩短了 Na 的扩散距离,该电极在 10 C 的高倍率下仍能提供 ∼129 mA h g-1 的可逆容量,非常接近 132 mA h g-1 的理论容量,实现了 ∼452 W h kg-1 的高能量密度和 4660 W kg-1 的高功率密度。当我们设计的 Na3(VOPO4)2F 分别进一步用作非水、水基和固态全 NIB 的阴极时,由于其良好的动力学特性,总能实现优异的电化学性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Overcoming Kinetic Limitations of Polyanionic Cathode toward High-Performance Na-Ion Batteries

Overcoming Kinetic Limitations of Polyanionic Cathode toward High-Performance Na-Ion Batteries

Overcoming Kinetic Limitations of Polyanionic Cathode toward High-Performance Na-Ion Batteries

Polyanionic cathodes have attracted extensive research interest for Na-ion batteries (NIBs) due to their moderate energy density and desirable cycling stability. However, these compounds suffer from visible capacity fading and significant voltage decay upon the rapid sodium storage process, even if modified through nanoengineering or carbon-coating routes, leading to limited applications in NIBs. Herein, the Na3(VOPO4)2F cathode material with dominantly exposed {001} active facets is demonstrated by a topochemical synthesis route. Owing to the rational geometrical structure design and thereby directly shortening Na diffusion distance, the electrode delivers a reversible capacity of ∼129 mA h g–1 even at a high rate of 10 C, which is very close to the theoretical capacity of 132 mA h g–1, achieving a high energy density of ∼452 W h kg–1 coupled with a high-power density of 4660 W kg–1. When further served as a cathode for nonaqueous, aqueous-based, and solid-state full NIBs, respectively, our designed Na3(VOPO4)2F always enables superior electrochemical performance due to favorable kinetics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信