用于测量五种生命体征的 206 $\mu$W 片上生命体征监测系统

IF 2.8 2区 工程技术 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Sameen Minto;Austin Cable;Wala Saadeh
{"title":"用于测量五种生命体征的 206 $\\mu$W 片上生命体征监测系统","authors":"Sameen Minto;Austin Cable;Wala Saadeh","doi":"10.1109/TVLSI.2024.3415469","DOIUrl":null,"url":null,"abstract":"This article presents an area and power-efficient system-on-chip (SoC) for vital signs monitoring to provide patients with remote monitoring. It measures five important vitals including blood oxygen saturation (SpO2), respiration rate (RR), heart rate (HR), HR variability (HRV), and temperature. The proposed SoC utilizes a photoplethysmography (PPG) signal to compute HR, HRV, SpO2, and RR. The PPG signal is amplified and filtered using a PPG readout that includes a transimpedance amplifier (TIA) with a switched integrator (SI) to filter and amplify the signal. A differential second-order, delta-sigma analog-to-digital converter (\n<inline-formula> <tex-math>$\\Delta \\Sigma $ </tex-math></inline-formula>\n-ADC) is adopted to digitize the PPG signal. The SoC also comprises a low-power LED driver for both red and infrared (IR) LEDs which operate in pulsed mode with a 0.625% duty cycle. A vital signs extractor performs feature extraction (FE) and computes the vital signs with a maximum absolute error of less than 1%. In this work, the temperature is also measured by employing a Wheatstone bridge (WhB)-based temperature sensor which integrates thermal resistors into a second-order \n<inline-formula> <tex-math>$\\Delta \\Sigma $ </tex-math></inline-formula>\n-ADC. The proposed system shares \n<inline-formula> <tex-math>$\\Delta \\Sigma $ </tex-math></inline-formula>\n-ADC for digitizing the PPG signal and the temperature readings to reduce both area and power consumption. The proposed system computes the temperature over the human’s temperature range (\n<inline-formula> <tex-math>$32~^{\\circ }$ </tex-math></inline-formula>\n C to \n<inline-formula> <tex-math>$42~^{\\circ }$ </tex-math></inline-formula>\n C) with an accuracy of +/\n<inline-formula> <tex-math>$- 0.09~^{\\circ }$ </tex-math></inline-formula>\n C. The SoC is implemented using a 180 nm CMOS process with an area of 4.8 mm2 while consuming \n<inline-formula> <tex-math>$206~\\mu $ </tex-math></inline-formula>\n W.","PeriodicalId":13425,"journal":{"name":"IEEE Transactions on Very Large Scale Integration (VLSI) Systems","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A 206 μW Vital Signs Monitoring System on Chip for Measuring Five Vitals\",\"authors\":\"Sameen Minto;Austin Cable;Wala Saadeh\",\"doi\":\"10.1109/TVLSI.2024.3415469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents an area and power-efficient system-on-chip (SoC) for vital signs monitoring to provide patients with remote monitoring. It measures five important vitals including blood oxygen saturation (SpO2), respiration rate (RR), heart rate (HR), HR variability (HRV), and temperature. The proposed SoC utilizes a photoplethysmography (PPG) signal to compute HR, HRV, SpO2, and RR. The PPG signal is amplified and filtered using a PPG readout that includes a transimpedance amplifier (TIA) with a switched integrator (SI) to filter and amplify the signal. A differential second-order, delta-sigma analog-to-digital converter (\\n<inline-formula> <tex-math>$\\\\Delta \\\\Sigma $ </tex-math></inline-formula>\\n-ADC) is adopted to digitize the PPG signal. The SoC also comprises a low-power LED driver for both red and infrared (IR) LEDs which operate in pulsed mode with a 0.625% duty cycle. A vital signs extractor performs feature extraction (FE) and computes the vital signs with a maximum absolute error of less than 1%. In this work, the temperature is also measured by employing a Wheatstone bridge (WhB)-based temperature sensor which integrates thermal resistors into a second-order \\n<inline-formula> <tex-math>$\\\\Delta \\\\Sigma $ </tex-math></inline-formula>\\n-ADC. The proposed system shares \\n<inline-formula> <tex-math>$\\\\Delta \\\\Sigma $ </tex-math></inline-formula>\\n-ADC for digitizing the PPG signal and the temperature readings to reduce both area and power consumption. The proposed system computes the temperature over the human’s temperature range (\\n<inline-formula> <tex-math>$32~^{\\\\circ }$ </tex-math></inline-formula>\\n C to \\n<inline-formula> <tex-math>$42~^{\\\\circ }$ </tex-math></inline-formula>\\n C) with an accuracy of +/\\n<inline-formula> <tex-math>$- 0.09~^{\\\\circ }$ </tex-math></inline-formula>\\n C. The SoC is implemented using a 180 nm CMOS process with an area of 4.8 mm2 while consuming \\n<inline-formula> <tex-math>$206~\\\\mu $ </tex-math></inline-formula>\\n W.\",\"PeriodicalId\":13425,\"journal\":{\"name\":\"IEEE Transactions on Very Large Scale Integration (VLSI) Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Very Large Scale Integration (VLSI) Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10570314/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Very Large Scale Integration (VLSI) Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10570314/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种面积小、功耗低的生命体征监测片上系统 (SoC),可为患者提供远程监测。它可测量五种重要的生命体征,包括血氧饱和度 (SpO2)、呼吸频率 (RR)、心率 (HR)、心率变异性 (HRV) 和体温。所提议的 SoC 利用光敏血压计(PPG)信号来计算心率、心率变异、SpO2 和 RR。PPG 信号通过 PPG 读出装置进行放大和滤波,该读出装置包括一个带开关积分器 (SI) 的跨阻抗放大器 (TIA),用于滤波和放大信号。采用差分二阶、delta-sigma 模数转换器($\Delta \Sigma $ -ADC)将 PPG 信号数字化。SoC 还包括一个低功耗 LED 驱动器,用于以 0.625% 占空比脉冲模式工作的红色和红外 (IR) LED。生命体征提取器执行特征提取(FE)并计算生命体征,最大绝对误差小于 1%。在这项工作中,还采用了基于惠斯通电桥(WhB)的温度传感器来测量温度,该传感器将热敏电阻集成到二阶 $\Delta \Sigma $ -ADC 中。提议的系统共用 $\Delta \Sigma $ -ADC 对 PPG 信号和温度读数进行数字化,以减少面积和功耗。该系统使用 180 纳米 CMOS 工艺实现,面积为 4.8 mm2,功耗为 206~\mu $ W。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A 206 μW Vital Signs Monitoring System on Chip for Measuring Five Vitals
This article presents an area and power-efficient system-on-chip (SoC) for vital signs monitoring to provide patients with remote monitoring. It measures five important vitals including blood oxygen saturation (SpO2), respiration rate (RR), heart rate (HR), HR variability (HRV), and temperature. The proposed SoC utilizes a photoplethysmography (PPG) signal to compute HR, HRV, SpO2, and RR. The PPG signal is amplified and filtered using a PPG readout that includes a transimpedance amplifier (TIA) with a switched integrator (SI) to filter and amplify the signal. A differential second-order, delta-sigma analog-to-digital converter ( $\Delta \Sigma $ -ADC) is adopted to digitize the PPG signal. The SoC also comprises a low-power LED driver for both red and infrared (IR) LEDs which operate in pulsed mode with a 0.625% duty cycle. A vital signs extractor performs feature extraction (FE) and computes the vital signs with a maximum absolute error of less than 1%. In this work, the temperature is also measured by employing a Wheatstone bridge (WhB)-based temperature sensor which integrates thermal resistors into a second-order $\Delta \Sigma $ -ADC. The proposed system shares $\Delta \Sigma $ -ADC for digitizing the PPG signal and the temperature readings to reduce both area and power consumption. The proposed system computes the temperature over the human’s temperature range ( $32~^{\circ }$ C to $42~^{\circ }$ C) with an accuracy of +/ $- 0.09~^{\circ }$ C. The SoC is implemented using a 180 nm CMOS process with an area of 4.8 mm2 while consuming $206~\mu $ W.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.40
自引率
7.10%
发文量
187
审稿时长
3.6 months
期刊介绍: The IEEE Transactions on VLSI Systems is published as a monthly journal under the co-sponsorship of the IEEE Circuits and Systems Society, the IEEE Computer Society, and the IEEE Solid-State Circuits Society. Design and realization of microelectronic systems using VLSI/ULSI technologies require close collaboration among scientists and engineers in the fields of systems architecture, logic and circuit design, chips and wafer fabrication, packaging, testing and systems applications. Generation of specifications, design and verification must be performed at all abstraction levels, including the system, register-transfer, logic, circuit, transistor and process levels. To address this critical area through a common forum, the IEEE Transactions on VLSI Systems have been founded. The editorial board, consisting of international experts, invites original papers which emphasize and merit the novel systems integration aspects of microelectronic systems including interactions among systems design and partitioning, logic and memory design, digital and analog circuit design, layout synthesis, CAD tools, chips and wafer fabrication, testing and packaging, and systems level qualification. Thus, the coverage of these Transactions will focus on VLSI/ULSI microelectronic systems integration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信