用于高性能锂-气电池的气体电极电纺丝工程

IF 19.5 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Carbon Energy Pub Date : 2024-06-19 DOI:10.1002/cey2.572
Jingzhao Wang, Xin Chen, Jianan Wang, Xiangming Cui, Ze Wang, Guangpeng Zhang, Wei Lyu, Maxim Shkunov, S. Ravi P. Silva, Yaozu Liao, Kai Yang, Wei Yan
{"title":"用于高性能锂-气电池的气体电极电纺丝工程","authors":"Jingzhao Wang,&nbsp;Xin Chen,&nbsp;Jianan Wang,&nbsp;Xiangming Cui,&nbsp;Ze Wang,&nbsp;Guangpeng Zhang,&nbsp;Wei Lyu,&nbsp;Maxim Shkunov,&nbsp;S. Ravi P. Silva,&nbsp;Yaozu Liao,&nbsp;Kai Yang,&nbsp;Wei Yan","doi":"10.1002/cey2.572","DOIUrl":null,"url":null,"abstract":"<p>Lithium–gas batteries (LGBs) have garnered significant attention due to their impressive high-energy densities and unique gas conversion capability. Nevertheless, the practical application of LGBs faces substantial challenges, including sluggish gas conversion kinetics inducing in low-rate performance and high overpotential, along with limited electrochemical reversibility leading to poor cycle life. The imperative task is to develop gas electrodes with remarkable catalytic activity, abundant active sites, and exceptional electrochemical stability. Electrospinning, a versatile and well-established technique for fabricating fibrous nanomaterials, has been extensively explored in LGB applications. In this work, we emphasize the critical structure–property for ideal gas electrodes and summarize the advancement of employing electrospun nanofibers (NFs) for performance enhancement in LGBs. Beyond elucidating the fundamental principles of LGBs and the electrospinning technique, we focus on the systematic design of electrospun NF-based gas electrodes regarding optimal structural fabrication, catalyst handling and activation, and catalytic site optimization, as well as considerations for large-scale implementation. The demonstrated principles and regulations for electrode design are expected to inspire broad applications in catalyst-based energy applications.</p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"6 10","pages":""},"PeriodicalIF":19.5000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.572","citationCount":"0","resultStr":"{\"title\":\"Electrospinning engineering of gas electrodes for high-performance lithium–gas batteries\",\"authors\":\"Jingzhao Wang,&nbsp;Xin Chen,&nbsp;Jianan Wang,&nbsp;Xiangming Cui,&nbsp;Ze Wang,&nbsp;Guangpeng Zhang,&nbsp;Wei Lyu,&nbsp;Maxim Shkunov,&nbsp;S. Ravi P. Silva,&nbsp;Yaozu Liao,&nbsp;Kai Yang,&nbsp;Wei Yan\",\"doi\":\"10.1002/cey2.572\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Lithium–gas batteries (LGBs) have garnered significant attention due to their impressive high-energy densities and unique gas conversion capability. Nevertheless, the practical application of LGBs faces substantial challenges, including sluggish gas conversion kinetics inducing in low-rate performance and high overpotential, along with limited electrochemical reversibility leading to poor cycle life. The imperative task is to develop gas electrodes with remarkable catalytic activity, abundant active sites, and exceptional electrochemical stability. Electrospinning, a versatile and well-established technique for fabricating fibrous nanomaterials, has been extensively explored in LGB applications. In this work, we emphasize the critical structure–property for ideal gas electrodes and summarize the advancement of employing electrospun nanofibers (NFs) for performance enhancement in LGBs. Beyond elucidating the fundamental principles of LGBs and the electrospinning technique, we focus on the systematic design of electrospun NF-based gas electrodes regarding optimal structural fabrication, catalyst handling and activation, and catalytic site optimization, as well as considerations for large-scale implementation. The demonstrated principles and regulations for electrode design are expected to inspire broad applications in catalyst-based energy applications.</p>\",\"PeriodicalId\":33706,\"journal\":{\"name\":\"Carbon Energy\",\"volume\":\"6 10\",\"pages\":\"\"},\"PeriodicalIF\":19.5000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.572\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cey2.572\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Energy","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cey2.572","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

锂-气电池(LGB)因其令人印象深刻的高能量密度和独特的气体转换能力而备受关注。然而,LGB 的实际应用面临着巨大的挑战,包括缓慢的气体转换动力学导致的低速率性能和高过电位,以及有限的电化学可逆性导致的低循环寿命。当务之急是开发具有显著催化活性、丰富活性位点和优异电化学稳定性的气体电极。电纺丝是一种多功能、成熟的纤维状纳米材料制造技术,已在 LGB 应用中得到广泛探索。在这项工作中,我们强调了理想气体电极的关键结构-性能,并总结了采用电纺纳米纤维 (NF) 提高 LGB 性能的进展。除了阐明 LGB 和电纺技术的基本原理外,我们还重点关注了基于电纺 NF 的气体电极的系统设计,包括最佳结构制造、催化剂处理和活化、催化位点优化以及大规模实施的注意事项。所展示的电极设计原则和规范有望在基于催化剂的能源应用中得到广泛应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Electrospinning engineering of gas electrodes for high-performance lithium–gas batteries

Electrospinning engineering of gas electrodes for high-performance lithium–gas batteries

Electrospinning engineering of gas electrodes for high-performance lithium–gas batteries

Lithium–gas batteries (LGBs) have garnered significant attention due to their impressive high-energy densities and unique gas conversion capability. Nevertheless, the practical application of LGBs faces substantial challenges, including sluggish gas conversion kinetics inducing in low-rate performance and high overpotential, along with limited electrochemical reversibility leading to poor cycle life. The imperative task is to develop gas electrodes with remarkable catalytic activity, abundant active sites, and exceptional electrochemical stability. Electrospinning, a versatile and well-established technique for fabricating fibrous nanomaterials, has been extensively explored in LGB applications. In this work, we emphasize the critical structure–property for ideal gas electrodes and summarize the advancement of employing electrospun nanofibers (NFs) for performance enhancement in LGBs. Beyond elucidating the fundamental principles of LGBs and the electrospinning technique, we focus on the systematic design of electrospun NF-based gas electrodes regarding optimal structural fabrication, catalyst handling and activation, and catalytic site optimization, as well as considerations for large-scale implementation. The demonstrated principles and regulations for electrode design are expected to inspire broad applications in catalyst-based energy applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carbon Energy
Carbon Energy Multiple-
CiteScore
25.70
自引率
10.70%
发文量
116
审稿时长
4 weeks
期刊介绍: Carbon Energy is an international journal that focuses on cutting-edge energy technology involving carbon utilization and carbon emission control. It provides a platform for researchers to communicate their findings and critical opinions and aims to bring together the communities of advanced material and energy. The journal covers a broad range of energy technologies, including energy storage, photocatalysis, electrocatalysis, photoelectrocatalysis, and thermocatalysis. It covers all forms of energy, from conventional electric and thermal energy to those that catalyze chemical and biological transformations. Additionally, Carbon Energy promotes new technologies for controlling carbon emissions and the green production of carbon materials. The journal welcomes innovative interdisciplinary research with wide impact. It is indexed in various databases, including Advanced Technologies & Aerospace Collection/Database, Biological Science Collection/Database, CAS, DOAJ, Environmental Science Collection/Database, Web of Science and Technology Collection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信