反德西特空间 SOe(2,2)/SOe(2,1)$\mathop {rm {SO_e}}(2,2)/\mathop {\rm {SO_e}}(2,1)$ 的达朗贝尔共振

IF 0.8 3区 数学 Q2 MATHEMATICS
Simon Roby
{"title":"反德西特空间 SOe(2,2)/SOe(2,1)$\\mathop {rm {SO_e}}(2,2)/\\mathop {\\rm {SO_e}}(2,1)$ 的达朗贝尔共振","authors":"Simon Roby","doi":"10.1002/mana.202300212","DOIUrl":null,"url":null,"abstract":"<p>We consider the action of the d'Alembertian on functions on the pseudo-Riemannian three-dimensional anti-de Sitter space. We determine the resonances of this operator. With each resonance one can associate a <i>residue representation</i>. We give an explicit description of these representations via Langlands parameters.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"297 9","pages":"3423-3438"},"PeriodicalIF":0.8000,"publicationDate":"2024-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resonances of the d'Alembertian on the anti-de Sitter space \\n \\n \\n \\n SO\\n e\\n \\n (\\n 2\\n ,\\n 2\\n )\\n /\\n \\n SO\\n e\\n \\n (\\n 2\\n ,\\n 1\\n )\\n \\n $\\\\mathop {\\\\rm {SO_e}}(2,2)/\\\\mathop {\\\\rm {SO_e}}(2,1)$\",\"authors\":\"Simon Roby\",\"doi\":\"10.1002/mana.202300212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider the action of the d'Alembertian on functions on the pseudo-Riemannian three-dimensional anti-de Sitter space. We determine the resonances of this operator. With each resonance one can associate a <i>residue representation</i>. We give an explicit description of these representations via Langlands parameters.</p>\",\"PeriodicalId\":49853,\"journal\":{\"name\":\"Mathematische Nachrichten\",\"volume\":\"297 9\",\"pages\":\"3423-3438\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Nachrichten\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300212\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300212","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了伪黎曼三维反德西特空间上的达朗贝尔函数作用。我们确定了这一算子的共振。每个共振都可以关联一个残差表示。我们通过朗兰兹参数对这些表示给出了明确的描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Resonances of the d'Alembertian on the anti-de Sitter space SO e ( 2 , 2 ) / SO e ( 2 , 1 ) $\mathop {\rm {SO_e}}(2,2)/\mathop {\rm {SO_e}}(2,1)$

We consider the action of the d'Alembertian on functions on the pseudo-Riemannian three-dimensional anti-de Sitter space. We determine the resonances of this operator. With each resonance one can associate a residue representation. We give an explicit description of these representations via Langlands parameters.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
157
审稿时长
4-8 weeks
期刊介绍: Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信